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EXECUTIVE SUMMARY 
 
The LingTester Test Results (passive - offline mode) deliverable is the second deliverable of              
the Task 4.5 Processing social media which is part of the Work Package 4. In this deliverable                 
the focus shifts from technical aspects of the LingTester tool, which prototype was presented              
in D4.11, to a more scientific approach regarding the test evaluation and results of the tool.                
This is achieved by concentrating on the essential tasks of the classification process. All the               
involving tasks, even if some of them seem to be trivial, in reality are equally important. The                 
tasks are related to methodologies of collected data analysis, feature selection, classification            
and evaluation. 
 
In a more general view, LingTester is the FrailSafe language analysis tool that aims to               
process the user’s typed text and detect abnormal behaviour. At this point, the deliverable is               
able to perform classification according to levels of frailty.  
 
The main objective of this Work Package is to handle the collection, management and              
analysis of frailty older people data streamed through their social, behavioural and cognitive             
activities. Both offline and online methods have been developed. Moreover, the above            
methods have been applied in order to manage and analyze new data and also generate the                
FrailSafe patient models. 
 
Reader is strongly advised to read deliverables 4.11 and 4.12 in order to fully understand this                
report, as it is a follow up on how the prediction model has been updated. 
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1. INTRODUCTION 
The main focus of this deliverable is to finalize a well performing predictive model taking in                
account the new populated participants data. The evaluation of the model is also an              
important aspect of the report, for this reason a satisfactory number of algorithms has been               
tested and compared. The evaluation of the test results is also presented and discussed on               
this text. 
 
The report is organized in six main chapters (excluding the auxiliary sections). The first main               
chapters attempts to briefly describe frailty and the collected project data related to the task.               
The next chapter studies the feature extraction techniques and methodologies used on            
LingTester tool. Following feature extraction, the next chapter focuses on the predictive            
model creation process. On chapter five, an introduction is given for the subject of suicidal               
tendencies detection and the methodologies followed to build the relevant model. Test and             
evaluation results are the subject of the next chapter which is numbered as section six.               
Finally, a discussion on the ethics and safety, related to the task, is made. 

 
 
2. FRAILTY 

 

2.1 General frailty description 
 
Frailty is a common clinical syndrome in older adults that carries an increased risk for poor                
health outcomes including falls, incident disability, hospitalization, and mortality [7, 8]. Frailty            
is theoretically defined as a clinically recognizable state of increased vulnerability resulting            
from aging-associated decline in reserve and function across multiple physiologic systems           
such that the ability to cope with everyday or acute stressors is comprised. In the absence of                 
a gold standard, frailty has been operationally defined by Fried et al. as meeting three out of                 
five phenotypic criteria indicating compromised energetics: low grip strength, low energy,           
slowed walking speed, low physical activity, and/or unintentional weight loss [9]. A pre-frail             
stage, in which one or two criteria are present, identifies a subset at high risk of progressing                 
to frailty. Various adaptations of Fried’s clinical phenotype have emerged in the literature,             
which were often motivated by available measures in specific studies rather than meaningful             
conceptual differences. 
 

2.2 Collected data 
 
Utilising eCRF API, we were able to retrieve all available raw data, stored by each medical                
team, containing detailed answers to the questionnaire, along with uploaded files of present             
and past text. For the purposes of our research, we retrieved only submissions with at least                
one file uploaded, and proceed to verify the uploaded content. Results were the following: 

● Greece (UoP): 128 participants 
○ 86 participants from the Start group 
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○ 42 participants from the Main group 
● Cyprus (Materia): 89 participants 

○ 46 participants from the Start group 
○ 43 participants from the Main group 

● France (INSERM): 122 participants 
○ 80 participants from the Start group 
○ 42 participants from the Main group 

 
For the aforementioned submissions, however, and after manual validation, we imported to            
our internal database only the non-empty ones that text was digitally available, ignoring             
during this phase all images or PDF files containing scanned images. As a result,              
submissions imported for the next phase were the following: 

● Greece (UoP): 123 participants, 33 of which provided data from second visit 
● Cyprus (Materia): 86 participants, 19 of which provided data from second visit 
● France (INSERM): 95 participants, 24 of which provided data from second visit 

 
An initial statistical analysis based on the current set of patient data returned the following               
results per classified feature: 
 

 
Figure 1. Submissions per language 

 
 
 

● Per language: 
○ Data from 128 patients were provided in Greek, but 5 of them refused or were 

unable to provide any written text, neither for the description of the image, nor 
for the personal event. Also, 33 of them provided extra data from second visit. 
Also, input from 3 participants were written in Greek polytonic. While it was not 
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in our initial scope to differentiate this information, it was recorded in the offline 
database for future study 

○ Data from 89 participants were provided in Cypriot Greek, but 4 of them 
refused or were unable to provide any written text, neither for the description 
of image, nor describing a personal event and as result their data was 
discarded for further analysis 

○ Data from 122 patients were provided in French, but only 94 were in digital 
form and therefore used for further analysis 

 

 
Figure 2. Participants per frailty status 

 
However, looking on the data of how frailty is distributed, we received the following results: 

● 106 patients were classified as non-frail 
● 141 patients were classified as pre-frail 
● and 85 patients were classified as frail 
● while for 5 patients, there was no information available for their frailty status, 

therefore these patient data were excluded from the training procedure 
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Figure 3. Distribution of patients per sex 
 

● Per sex: 
○ 131 participants were male 
○ and 206 participants were female 

 
 
 

2.3 VPM Update 
All aforementioned data was internally manipulated in a custom-built database consisted in            
text files. However, within Work Package 4 it was necessary all data provided from eCRF               
and extracted features were available to the VPM module. As a result, data can be               
automatically updated through the execution of the ​updateTextToNoSQL function in          
offline-parse.py file ​, found in Annex ​Database management & feature extraction of           
the ​D4.11​. More details about the provided API to send this data to the NoSQL server is                 
discussed in detail in ​D4.16​. 
 
 

3. FEATURE EXTRACTION 
 
The feature extraction task is an essential pre-classification task. The FrailSafe project            
collects a wide range of participants’ data, these data to be utilized by the candidate model                
must first be appropriately processed. Turning raw data into objects that patterns can be              
derived from is the process of creating features. A feature is simply an individual measurable               
property of a phenomenon being observed. Depending on the data source there are             
potentially dozens of different features that can be created from a single block of data. 
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The feature extraction task starts from an initial set of measured data and builds derived               
values (features) intended to be informative and nonredundant, facilitating the subsequent           
learning and generalization steps, and in some cases leading to better human interpretations.             
Feature extraction involves reducing the amount of resources required to describe a large set              
of data. When performing analysis of complex data one of the major problems stems from               
the number of variables involved. Analysis with a large number of variables generally             
requires a large amount of memory and computation power, also it may cause a              
classification algorithm to overfit to training samples and generalize poorly to new samples.             
Feature extraction is a general term for methods of constructing combinations of the             
variables to get around these problems while still describing the data with sufficient accuracy. 
 

 
3.1 Primitive features 

 
Apart from existing features as stated in D4.11 chapter 5.1, extra ones were extracted              
programmatically for all patients with digital text from eCRF: 
 

1. Year of birth 
2. Profession 
3. Residence zone 
4. How many people do you follow on Twitter? 
5. How many followers you have on twitter? 
6. Family status 
7. How many friends do you have on Facebook? 
8. Do you consider yourself a familiar user of social media? 
9. Do you use Facebook? 
10. How often do you connect to the internet per week? 
11. Have you changed your security settings in social media in order to protect your              

personal data? 
 
We decided to retrieve only patient attributes that could be available directly or indirectly in               
the future through social media networks or other means to identify users’ electronic footprint.  
 
 

3.2 Derived Features 

3.2.1 Misspellings 
This feature is derived based on the percentage of misspellings found within a text (divided               
by all the words in the text). In order to achieve high accuracy, a known dictionary is used per                   
language. The same dictionary is used by thousands of people that utilise LibreOffice , an              1

open office suite of applications. LibreOffice is community-driven and developed software,           
and is a project of the not-for-profit organization, The Document Foundation. LibreOffice is             

1 https://www.libreoffice.org/ 

- 12 - 



FRAILSAFE – H2020-PHC–690140 ​D4.13 

free and open source software, originally based on OpenOffice.org (commonly known as            
OpenOffice), and is the most actively developed OpenOffice.org successor project. 

3.2.2 Term Frequencies 
Proceeding to more NLP specific techniques the term frequency–inverse document          
frequency (tf-idf) is used. Tf-idf is a numerical statistic that is intended to reflect how               
important a word is to a document in a corpus. It is used as a weighting factor in text mining.                    
The tf-idf value increases proportionally to the number of times a word appears in the               
document, but is offset by the frequency of the word in the corpus, which helps to adjust for                  
the fact that some words appear more frequently in general (Salton et al, 1983). However, it                
became apparent that the use of the full list of the tf-idf features, which has decreased due to                  
the stemming process, produces substantial error to the prediction model, and thus was             
removed. 
 
In order to overcome this issue, information gain (IG), also known as Mutual Information, has               
been used to extract only the terms (or small phrases) that indeed can help the prediction                
model improve in the overall accuracy. In general terms, the expected information gain is the               
change in information entropy ​H from a prior state to a state that takes some information as                 
given: 

  
 
Information gain for classification is a measure of how common a feature is in a particular                
class compared to how common it is in all other classes. A word that occurs primarily in                 
non-frail patients and rarely in frail ones is high information. That makes sense because the               
point is to use only the most informative features and ignore the rest.  
 
One of the best metrics for information gain is chi square [1, 3]. The NLTK package, already                 
used for other preprocessing tasks in more than one work packages, includes this in the               
BigramAssocMeasures class in the metrics package. To use it, first we need to calculate a               
few frequencies for each word: its overall frequency and its frequency within each class. This               
is done with a ​FreqDist class for overall frequency of words, and a ​ConditionalFreqDist class               
where the conditions are the class labels. Once we have those numbers, we can score words                
with the ​BigramAssocMeasures.chi_sq function, then sort the words by score and take the             
top ​X ​. We then put these words into a set, and use a set membership test in our feature                   
selection function to select only those words that appear in the set. Now each text from a                 
patient is classified based on the presence of these high information words. This process,              
has been constructed within the ​compute_ig ​python function, available also for other            
tasks. An example, of this task is shown below. It can be seen, that information gain is                 
different per feature (word n our case), and thus is more than apparent that taking a small                 
specific percent of this feature set, minimises the noise included by the rest of the words. 
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Figure 4: Distribution of information gain per available token 
 

3.2.3 Sentiment analysis 
Sentiment analysis is based on a overall rating sentiment of the patient’s text, trying to detect                
the polarity of the text. This feature is extracted using a dictionary and a basic algorithm                
which calculates the polarity of the text based on the sum of all polarities of words within the                  
same text. The dictionary used can be found within the ​pattern python module and is               
available for the English language. Due to missing sentiment vocabulary for other languages,             
text is automatically translated in English for this step. 

 
 

3.2.3 Readability score 
We decided that readability score may improve our prediction model, and we proceed to              
implement a series of various models that calculate readability, and see which one makes              
the difference. All methods measure textual difficulty, which indicates how easy a text is to               
read. The following readability scores have been implemented. 
 
Flesch Reading Ease 
The Flesch Reading Ease Scale measures readability as follows: 

● 100: Very easy to read. Average sentence length is 12 words or fewer. No words of 
more than two syllables. 

● 65: Plain English. Average sentence is 15 to 20 words long. Average word has two 
syllables. 

● 30: A little hard to read. Sentences will have mostly 25 words. Two syllables usually. 
● 0: Very hard to read. Average sentence is 37 words long. Average word has more 

than two syllables. 
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The higher the rating, the easier the text is to understand. By the very nature of technical                 
subject matter, the Flesch score is usually relatively low for technical documentation. If the              
Flesch test is used regularly, one may develop a sense of what a reasonable score is for the                  
type of documentation one is working on and aim to align with this score. The approach to                 
calculating the Flesch score is as follows: 

1. Calculate the average sentence length, L. 
2. Calculate the average number of syllables per word, N. 
3. Calculate score (between 0-100%). 

 
 
SMOG Index 
The SMOG grade (Simple Measure of Gobbledygook) is a measure of readability that             
estimates the years of education needed to understand a piece of writing. The formula for               
calculating the SMOG grade was developed by G. Harry McLaughlin as a more accurate and               
more easily calculated substitute for the Gunning fog index and published in 1969. To make               
calculating a text's readability as simple as possible an approximate formula was also given              
— count the words of three or more syllables in three 10-sentence samples, estimate the               
count's square root (from the nearest perfect square), and add 3. 
 
To calculate SMOG: 

1. Count a number of sentences (at least 30) 
2. In those sentences, count the polysyllables (words of 3 or more syllables). 
3. Calculate using 

 
 
After numerous tests, this feature seem not affect the prediction model, as it was made 
apparent that Greek language is not fully supported by the underlying NLTK functions. 
 
 
Flesch–Kincaid Grade Level 
Although this method uses the same core measures (word length and sentence length) like              
the Flesch Reading Ease, they have different weighting factors. The results of the two tests               
correlate approximately inversely: a text with a comparatively high score on the Reading             
Ease test should have a lower score on the Grade-Level test. These readability tests are               
used extensively in the field of education. The "Flesch–Kincaid Grade Level Formula" instead             
presents a score as a U.S. grade level, making it easier for teachers, parents, librarians, and                
others to judge the readability level of various books and texts. It can also mean the number                 
of years of education generally required to understand this text, relevant when the formula              
results in a number greater than 10. The grade level is calculated with the following formula: 
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Coleman–Liau index 
The Coleman–Liau index is a readability test designed by Meri Coleman and T. L. Liau to                
gauge the understandability of a text. Like the Flesch–Kincaid Grade Level, Gunning fog             
index, SMOG index, and Automated Readability Index, its output approximates the U.S.            
grade level thought necessary to comprehend the text. 
 
The Coleman–Liau index was designed to be easily calculated mechanically from samples of             
hard-copy text. Unlike syllable-based readability indices, it does not require that the character             
content of words be analyzed, only their length in characters. Therefore, it could be used in                
conjunction with theoretically simple mechanical scanners that would only need to recognize            
character, word, and sentence boundaries, removing the need for full optical character            
recognition or manual keypunching. The Coleman–Liau index is calculated with the following            
formula: 

 
 
L is the average number of letters per 100 words and S is the average number of sentences                  
per 100 words. 
 
 
Automated readability index 
The formula for calculating the automated readability index is given below: 
 

 
 
where characters is the number of letters and numbers, words is the number of spaces, and                
sentences is the number of sentences, which were counted manually by the typist when the               
above formula was developed. Non-integer scores are always rounded up to the nearest             
whole number, so a score of 10.1 or 10.6 would be converted to 11. 
 
 
Dale–Chall readability formula 
The Dale–Chall readability formula is a readability test that provides a numeric gauge of the               
comprehension difficulty that readers come upon when reading a text. It uses a list of 3000                
words that groups of fourth-grade American students could reliably understand, considering           
any word not on that list to be difficult. The formula for calculating the raw score of the                  
Dale–Chall readability score is given below: 

 
 
 
Linsear Write 
Linsear Write is a readability metric for English text, purportedly developed for the United              
States Air Force to help them calculate the readability of their technical manuals.It was              
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specifically designed to calculate the United States grade level of a text sample based on               
sentence length and the number of words used that have three or more syllables. The               
algorithm to calculate Linsear Write score includes various steps of preprocessing and            
statistical analysis of the text. 
 
 
Gunning fog index 
The Gunning fog index is calculated with the following algorithm: 

1. Determine the average sentence length. (Divide the number of words by the number 
of sentences.) 

2. Count the "complex" words: those with three or more syllables. Do not include proper 
nouns, familiar jargon, or compound words. Do not include common suffixes (such as 
-es, -ed, or -ing) as a syllable 

3. Add the average sentence length and the percentage of complex words; and 
4. Multiply the result by 0.4. 

 
The complete formula is: 

 
 
Discussion about readability scores 
All aforementioned scores are heavily used in English by teachers, writers and technicians to              
identify the difficulty of a text, manual and try to simplify it. Within the current work package,                 
however, we tried to use them towards a different direction and identify how frailty is               
connected to the readability of the expressed text, provided by a patient. This is a hypothesis                
that hasn’t been discarded yet and needs to be thoroughly tested the following months, after               
improving the aforementioned readability scores to support better the Greek language. 
 
 
 
 

4. PREDICTION MODEL 
 

4.1 Introduction 
 
In this section of the report, will be presented a brief introduction of the major artificial                
intelligence techniques and methodologies that are used to produce predictive models.           
These methodologies can be found in the literature grouped under the term machine learning              
[10]. 
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4.2 Machine Learning 

4.2.1 History 
The field inherits its methodologies from mathematics and statistics. The first real form of              
machine learning is discovered around 1950s with the very well known “Turing Test” [11],              
some of the most basic algorithms like “Nearest neighbours”, “Back propagation” and            
“Support vector machines” are getting discovered from 1970s through 1990s. Near this time             
the machine learning approach shifts from knowledge-driven to a more data-driven approach.            
After 2000s, technological advancements in computer chips give the ability to machine            
learning algorithms to utilize parallel processing and big data. Neural networks can now be              
run in a big number of cpu cores and this new methodology advances to become the “Deep                 
learning” [12] approach. In the following years machine learning models are widely adopted             
in software programs, giving great solutions to problems in almost any real world sector.  
 
 

4.2.2 The process 
The construction of a prediction model involves a number of tasks, basically the figure below               
summarizes the whole process.  
 
 

 
Figure 5: Process for the construction of a prediction model 

 
 
The first phase to the construction of a model is the raw data collection. FrailSafe project                
involves several number of teams under the umbrellas of different work packages in order to               
collect and parse all the related project data including clinical trials, hardware sensors data              
and higher level (analyzed) data. All the collected is potential input to the LingTester              
predictive model thus it has to be analyzed by the tasks of Feature extraction and Feature                
Selection which will be presented separately in the following sections. The next step of the               
process is the classification task, in this task a big number of available classification              
algorithms is applied and tested in order to finalize the candidate model giving the best               
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predictive abilities. The finalized model is afterwards ready to be applied on real world              
instances. 
 
 

4.3 WEKA Software Package 

4.2.2 Description & features 
 
WEKA [13] Software is one of the most known packages used researchers and developers,              
it provides implementations of learning algorithms that you be easily applied to any dataset. It               
also includes a variety of tools for transforming datasets, such as the algorithms for              
discretization and sampling. A standard use casio scenario includes the preprocess of a             
dataset, the feed into a learning scheme, and the analysis of the resulting classifier and its                
performance. It was worth noting that every use flow the user wants to implement can be                
achieved by simply utilizing the GUI tools that accompany weka or in more complex              
scenarios, the user can access or alter directly the implemented source code through its own               
applications. Summarizing the most important features of the software: 
 

● It is Freely available under the GNU General Public License. 
● It is Portable, since it is fully implemented in the Java programming language and              

thus runs on almost any modern computing platform. 
● It includes a comprehensive collection of data preprocessing and modeling          

techniques. 
● It is Easy to use or alter due to its graphical user interfaces and extensible libraries. 

 

4.2.2 The Explorer package 
 
The explorer package is WEKA’s main graphical user interface, it gives access to all its               
facilities using menu selection and form filling. It is illustrated in ​figure 6​. To begin, there are                 
six different panels, selected by the tabs at the top, corresponding to the various data mining                
tasks that weka supports. Further panels can become available by installing appropriate            
packages. 
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Figure 6: WEKA explorer package 
 
All the classification task analysis done in this and the related reports was conducted using               
mainly using the explorer package. The tab ​Preprocess ​was used to alter accordingly the              
training dataset. For the evaluation of the available attributes the selection tab was used. The               
learner algorithms that were tested, were found on the Classify tab where the evaluation              
results are also found. 
 
 

4.4 Feature extraction 
 
For the essential task of feature extraction, a python algorithm was developed. This script is               
highly complex and employs all the techniques that have already been discussed in             
deliverable D4.11. For better understanding and presentation, available features can be           
categorized by the extraction method that was used for their creation. The table below              
attempts to summarize this information. 
 

Feature Names Type - Extraction Method 

● transcript 
○ yes 
○ no 

● language 

Primitive 
Rules & filters on eCRF API data 
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○ greek 
○ greek-cypriot 
○ french 

● class 
○ nonfrail 
○ prefrail 
○ frail 

● data 
○ Date of the submission for the 

transition study 
● sex 

○ male 
○ female 

 
● do_you_consider_yourself_a_familiar

_user_of_social_media 
○ beginner 
○ less-familiar 
○ very-familiar 

● family_status 
○ married-or-in-a-relationship 
○ single 
○ divorced, 
○ widow 

● habitation_zone 
○ urban 
○ semi-urban 
○ rural 

● have_you_changed_your_security_se
ttings_in_social_media_in_order_to_p
rotect_your_personal_data  

○ yes 
○ no 

● year_of_birth 
● con_per_week ​connections per week 
● twitter_follows ​number if people user is 

following on Twitter 
● twitter_followers ​number of followers on 

Twitter 
● fb_friends ​number of friends on FB 

● text_length 
● number_of_sentences 
● number_of_words 
● number_of_words_per_sentence 
● text_entropy 

Derived 
Statistical Measures 

● desc_image_ENG_sentiment 
● desc_event_ENG_sentiment 
● prev_text_ENG_sentiment 

Derived 
Sentiment Analysis 

● desc_image_misspelled Derived 
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● desc_event_misspelled 
● prev_text_misspelled 

Percent of misspelled words based on 
known vocabulary 

● tf-0 
● tf-1 
● ... 

Derived 
Term frequency – Inverse document 
frequency, after feature selection based on 
information gain 

● flesch_reading_ease 
● smog_index 
● flesch_kincaid_grade 
● coleman_liau_index 
● automated_readability_index 
● dale_chall_readability_score 
● difficult_words 
● linsear_write_formula 
● gunning_fog 

Derived 
Readability score 

Table 1: List of features 
 
 

4.5 Feature selection 
 
Feature selection along with feature extraction are, as stated today in the majority of              
literature, the most essential tasks for creating a well performing predictive model. The             
prediction accuracy of a trained learner is directly depended on how much informative the              
selected model features are. 
 
The feature selection process, also known as variable selection, attribute selection or            
variable subset selection, is the process of selecting a subset of relevant features (variables,              
predictors) for use in model construction. The central premise when using a feature selection              
technique is that the data contains many features that are either redundant or irrelevant, and               
can thus be removed without incurring much loss of information [14]. Redundant or irrelevant              
features are two distinct notions, since one relevant feature may be redundant in the              
presence of another relevant feature with which it is strongly correlated. A number of              
techniques have been proposed in the literature using algorithms and even classifiers for             
automating the process of feature selection. The most common algorithms are the            
exhaustive, best first [15], simulated annealing [16] and the genetic algorithm [17]. In             
practice, the task of feature selection is a highly empirical process where algorithms and              
human intelligence are combined in order to find the optimal subset of features, thus              
constructing the final feature set that will be used in the classification task. 
 
As a first phase of the feature selection process we attempt to `Rank’ the available extracted                
features. The preliminary version of this document used the algorithm known as `OneR             
Attribute Evaluator’ that utilized the `One R’ [18] machine learning classifier and produced             
decent results. The classifier’s algorithm is presented in the following table. 
 
One R Classifier 
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Input:  
Load the complete set of features (C) 
Count the number of all features (N) 
 
Loop for N 

For each feature-class pair (P), 
     For each value of that P, make a rule: 
                    Count how often each value of target (class) appears 
          Find the most frequent class 
                     Make the rule assign that class to this value of the P 
      Calculate the total error of the rules of each P 
 

Output: 
Choose the P with the smallest total error. 

 
 
 
 
Another approach was used in the final version of the document producing even better              
results. The worth of each feature was measured using Pearson’s correlation between it and              
the class. Pearson correlation coefficient (PCC), also referred to as Pearson's ​r ​, is a              
measure of the linear correlation between two variables ​X and ​Y ​. It has a value between ​+1                 
and ​−1 ​, where ​1 is total positive linear correlation, ​0 is no linear correlation, and ​−1 is total                  
negative linear correlation. 

 
where: 
 

● n​ is the sample size 
● x​i ​,​y​i​ are the single samples indexed with ​i 

● , are the sample means 
 
The algorithm called `CorrelationAttributeEval’ (included in the WEKA package) was used to            
perform the attributes ranking using PCC. Nominal attributes are considered on a value by              
value basis by treating each value as an indicator. An overall correlation for a nominal               
attribute is arrived at via a weighted average. The Evaluator algorithm uses a small variation               
of PCC taking in account other evaluation metrics, like ReliefF, GainRatio, Entropy e.t.c.,             
though the use of a Ranker package. The Attribute Evaluator algorithm was run and the full                
table of results are summarized in the next table.  
 
Attribute selection output: 
 

=== Attribute Selection on all input data === 

 

Search Method: 
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Attribute ranking. 

 

Attribute Evaluator (supervised, Class (nominal): 160 class): 

Correlation Ranking Filter 

Ranked attributes: 

 0.1794      1 transcript 

 0.1728     14 year_of_birth 

 0.1689     24 dale_chall_readability_score 

 0.1567     19 flesch_reading_ease 

 0.1505     13 text_entropy 

 0.1503    104 tf-70 

 0.1408      4 language 

 0.1369    132 tf-98 

 0.1353     21 flesch_kincaid_grade 

 0.1285     20 smog_index 

 0.1223     22 coleman_liau_index 

 0.1178     74 tf-40 

 0.1137     23 automated_readability_index 

 0.1136    120 tf-86 

 0.1091     79 tf-45 

 0.1067    142 tf-108 

 0.1054     11 number_of_words 

 0.1052    135 tf-101 

 0.1025     66 tf-32 

 0.0979     42 tf-8 

 0.0955      9 text_length 

 0.0954    109 tf-75 

 0.0892     10 number_of_sentences 

 0.0883    100 tf-66 

 0.0879    126 tf-92 

 0.0871     12 number_of_words_per_sentence 

 0.0864     53 tf-19 

 0.0864    136 tf-102 

 0.0841    145 tf-111 

 0.083      80 tf-46 

 0.0828     87 tf-53 

 0.0809    144 tf-110 

 0.0807     92 tf-58 

 0.0803     82 tf-48 

 0.0803    121 tf-87 

 0.0794    143 tf-109 

 0.0794     73 tf-39 

 0.0785    139 tf-105 

 0.0768     39 tf-5 

 0.0759     33 prev_text_misspelled 

 0.0758     71 tf-37 

 0.0757     25 difficult_words 

 0.0749    125 tf-91 

 0.0746     67 tf-33 

 0.0743    107 tf-73 

 0.0737    108 tf-74 

 0.0727      6 family_status 

 0.0719     60 tf-26 

 0.0718     86 tf-52 

 0.0706     75 tf-41 

 0.0703    158 tf-124 

 0.0696     56 tf-22 

 0.0679     78 tf-44 

 0.0674    124 tf-90 

 0.0674    111 tf-77 

 0.0672    140 tf-106 

 0.067     113 tf-79 

 0.0664      5 sex 

 0.0656     63 tf-29 

 0.0655     58 tf-24 

 0.0631     76 tf-42 

 0.0627    128 tf-94 

 0.0622     99 tf-65 

 0.0621     50 tf-16 

 0.0618    134 tf-100 

 0.0618     45 tf-11 
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 0.0618    119 tf-85 

 0.0618    117 tf-83 

 0.0618    153 tf-119 

 0.0618     98 tf-64 

 0.0617     91 tf-57 

 0.0617     57 tf-23 

 0.0611    106 tf-72 

 0.0605    115 tf-81 

 0.0599    141 tf-107 

 0.0591      8 have_you_changed_your_security_settings_in_social_media_in_order_to_protect_your_personal 

 0.0578     83 tf-49 

 0.054      51 tf-17 

 0.0537     59 tf-25 

 0.0536     72 tf-38 

 0.0527    110 tf-76 

 0.0518    131 tf-97 

 0.0508    147 tf-113 

 0.0508     40 tf-6 

 0.0508     64 tf-30 

 0.0508     77 tf-43 

 0.0508     81 tf-47 

 0.0508     55 tf-21 

 0.0508     41 tf-7 

 0.0508    150 tf-116 

 0.0508    101 tf-67 

 0.0508    146 tf-112 

 0.0508     84 tf-50 

 0.0508     97 tf-63 

 0.0508    157 tf-123 

 0.0508    116 tf-82 

 0.0508     85 tf-51 

 0.0505     96 tf-62 

 0.0503     31 desc_image_misspelled 

 0.0502    130 tf-96 

 0.0476     93 tf-59 

 0.0476    133 tf-99 

 0.0476     36 tf-2 

 0.0476     37 tf-3 

 0.0476     38 tf-4 

 0.0476    123 tf-89 

 0.0476    122 tf-88 

 0.0476    148 tf-114 

 0.0476     35 tf-1 

 0.0476    102 tf-68 

 0.0476     61 tf-27 

 0.0476     34 tf-0 

 0.0471     18 fb_friends 

 0.0464    151 tf-117 

 0.0462    159 tf-125 

 0.0461     27 gunning_fog 

 0.0451    156 tf-122 

 0.0444    129 tf-95 

 0.0436     68 tf-34 

 0.0436     46 tf-12 

 0.0436    118 tf-84 

 0.0436     47 tf-13 

 0.0436    137 tf-103 

 0.0436     70 tf-36 

 0.0436     69 tf-35 

 0.0436     89 tf-55 

 0.0436     88 tf-54 

 0.0436     90 tf-56 

 0.0436     43 tf-9 

 0.0433     62 tf-28 

 0.0428    103 tf-69 

 0.0427    152 tf-118 

 0.0422     29 desc_event_ENG_sentiment 

 0.0421     95 tf-61 

 0.0405      3 do_you_consider_yourself_a_familiar_user_of_social_media 

 0.0403    127 tf-93 

 0.0402     52 tf-18 
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 0.0398    155 tf-121 

 0.0391    105 tf-71 

 0.0371    154 tf-120 

 0.0365     48 tf-14 

 0.0365     94 tf-60 

 0.0358     32 desc_event_misspelled 

 0.0341     44 tf-10 

 0.0333    138 tf-104 

 0.0322     26 linsear_write_formula 

 0.0308     65 tf-31 

 0.0291    149 tf-115 

 0.0272    112 tf-78 

 0.0256     49 tf-15 

 0.0251    114 tf-80 

 0.0243      7 habitation_zone 

 0.0222     28 desc_image_ENG_sentiment 

 0.0184     54 tf-20 

 0.0161     30 prev_text_ENG_sentiment 

 0.0108     15 con_per_week 

 0          17 twitter_followers 

 0          16 twitter_follows 

 0           2 source 

 

Selected attributes: 

1,14,24,19,13,104,4,132,21,20,22,74,23,120,79,142,11,135,66,42,9,109,10,100,126,12,53,136,145,80,87,144,92,82

,121,143,73,139,39,33,71,25,125,67,107,108,6,60,86,75,158,56,78,124,111,140,113,5,63,58,76,128,99,50,134,45,1

19,117,153,98,91,57,106,115,141,8,83,51,59,72,110,131,147,40,64,77,81,55,41,150,101,146,84,97,157,116,85,96,3

1,130,93,133,36,37,38,123,122,148,35,102,61,34,18,151,159,27,156,129,68,46,118,47,137,70,69,89,88,90,43,62,10

3,152,29,95,3,127,52,155,105,154,48,94,32,44,138,26,65,149,112,49,114,7,28,54,30,15,17,16,2 : 159 

 

 
As the size of the ranked feature space (RFS) is 160 (attributes), the examination of a few                 
different subsets of the full (ranked)feature space, depending on their size, was considered             
as a first good approach to evaluate the need to use the full feature space in the final frailty                   
model. Often in machine learning, it is highly possible for a subset of the feature space to                 
have a relatively good information value almost as good as the full feature space or even                
better than it. Thus, giving the possibility of feature space reduction which is very good as                
this reduces also the model complexity and increases its performance without sacrificing the             
accuracy of the model. In the following table, different subsets of the ranked feature space               
where selected (always selected by rank order) and where classified using the Logistic Model              
Trees classifier. The classifier used, as explained in section 6, is a strong classifier and is                
part of the final ensemble classifier. The subset accuracy scores were as follows. 
 

Size Full 
RFS(160) 

Big 
RFS(100) 

Medium 
RFS(60) 

Medium 
RFS(52) 

Small 
RFS(27) 

Accuracy 57.73% 58.72% 60.19% 60.18% 55.03% 

Table 2: Subset accuracy scores of feature selection 
 
It is clear that, a Medium sized RFS of 52 attributes performs relatively good to its size while                  
it reduces the complexity of the model. It is also obvious by the table, that a very big feature                   
space does always guarantee better overall performance. 
 
To further enhance the feature selection task, a simple yet effective process has been              
followed. The first steps of the process involve an iteration of classifications, using a Decision               
Tree model, where each individual feature was examined for its contribution to the accuracy              
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of the temporary model, using the cross validation method [19]. After a sufficient number of               
iterations, the resulting decision tree was visualized and examined by hand in order to further               
optimize the resulting model. 
 
 Final Feature Selection Algorithm 

 
Input:  
Load the complete set of features (C) 
 
Count the number of all features (N) 
Classify with C and store the accuracy (A) 
Initialize pointer as zero (P) 
Loop for N 

Remove C[P] 
Classify with C (Ac) 
If Ac < A 

     Restore C[P] 
 

Validate​ features by tree visualization 
 
Output: 
Subset of features (S) 

 
 
 
After the successful execution of all the above steps & procedures we combined the              
strongest results and we ended up with the following selected attributes to use for the final                
classification task. 
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Figure 7: Selected attributes 
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4.6 Classification 
 
This section is an attempt to describe briefly the classifier models that will be used to obtain                 
the test results in chapter 6. It will also help to understand why a classifier is better suitable                  
than another classifier for the given problem of frailty classification. 
 
The first big category of classifiers worth mentioning is the probabilistic or bayes classifiers.              
The classifiers aparting this category are based on the application of Bayes’ theorem with              
strong (naive) independence assumptions between the features. Naive Bayes [20], the most            
known classifier belonging in this category, has been studied extensively since the 1950s. It              
was introduced under a different name into the text retrieval community in the early 1960s               
and remains a popular method for text categorization, the problem of judging documents as              
belonging to one category or the other (such as spam or legitimate, sports or politics, etc.)                
with word frequencies as the features. With appropriate pre-processing, it is competitive in             
this domain with more advanced methods including support vector machines. It also finds             
application in automatic medical diagnosis. Abstractly, naive Bayes is a conditional           
probability model: given a problem instance to be classified, represented by a vector ​x              
representing some ​n features (independent variables), it assigns to this instance probabilities            
calculated by the formula: 

 
for each of k possible outcomes or classes C​k​. 
 
A second big category of classifiers is based on functions. The classifier family that is worth                
mentioning in this category, as it suits the problem, is Support Vector Machines [21]. SVMs               
are supervised learning models with associated learning algorithms that analyze data used            
for classification and regression analysis. Given a set of training examples, each marked as              
belonging to one or the other of two categories, an SVM training algorithm builds a model                
that assigns new examples to one category or the other, making it a non-probabilistic binary               
linear classifier. An SVM model is a representation of the examples as points in space,               
mapped so that the examples of the separate categories are divided by a clear gap that is as                  
wide as possible. New examples are then mapped into that same space and predicted to               
belong to a category based on on which side of the gap they fall. In addition to performing                  
linear classification, SVMs can efficiently perform a non-linear classification using what is            
called the kernel trick, implicitly mapping their inputs into high-dimensional feature spaces. In             
this category of classifiers the Multilayer perceptron is also considered a strong model. MLP              
is a feedforward artificial neural network model that maps sets of input data onto a set of                 
appropriate outputs. An MLP consists of multiple layers of nodes in a directed graph, with               
each layer fully connected to the next one. Except for the input nodes, each node is a neuron                  
(a processing element) with a nonlinear activation function. MLP utilizes a learning technique             
called backpropagation for training the network. 
 
The third category that will be mentioned is based on tree structures. Better known as               
Decision Trees [22], this set of classifiers mainly utilize a decision tree as a predictive model                
to go from observations about an item, represented in the nodes, to conclusions about the               
item's target value represented in the leaves. A tree can be trained by splitting the source set                 
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into subsets based on an attribute value test. This process is repeated on each derived               
subset in a recursive manner called recursive partitioning. The recursion is completed when             
the subset at a node has all the same value of the target variable, or when splitting no longer                   
adds value to the predictions. This process of top-down induction of decision trees is an               
example of a greedy algorithm, and it is by far the most common strategy for learning                
decision trees from data. An example trained tree follows in the next figure, representing the               
classic loan applicant acceptance decision tree. 

 
Figure 8: Example process of top-down induction of decision trees 

 
 
A number of other categories exists based on specific logical rules, e.g.            
K-Nearest-Neighbours [23], KStar [24] and Locally weighted learning (LWL), or based on            
more complex combinations of the primitive models e.g. RotationForest [25], LogitBoost and            
utilization of techniques like bagging, voting and stacking. The number of supervised            
classifiers available nowadays has increased a lot, despite this section has shown the most              
common models, it does not intend to fully map the subject, instead it gives a brief                
understanding of the models deployed on the next chapters. 
 

4.7 Semi-supervised learning 

4.7.1 Introduction 
 
In the quest to increase the performance of the future frailty predictive model, the need to                
enrich and expand the current frailty dataset was explored. In the previous subparagraphs,             
we examined techniques and methodologies that belong in a broad machine learning            
algorithmic category known as Supervised learning. In this subparagraph we will explore            
Semi-supervised learning. It’s a class of supervised learning tasks and techniques that also             
make use of unlabeled data for training – typically a small amount of labeled data with a large                  
amount of unlabeled data. Semi-supervised learning falls between unsupervised learning          
(without any labeled training data) and supervised learning (with completely labeled training            
data). Many machine-learning researchers have found that unlabeled data, when used in            
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conjunction with a small amount of labeled data, can produce considerable improvement in             
learning accuracy. The acquisition of labeled data for a learning problem often requires a              
skilled human agent (e.g. a doctor) or a physical experiment (e.g. clinical examination). The              
cost associated with the labeling process thus may render a fully labeled training set              
infeasible, whereas acquisition of unlabeled data is relatively inexpensive. In such situations,            
semi-supervised learning can be of great practical value. Semi-supervised learning is also of             
theoretical interest in machine learning and as a model for human learning. 
 

4.7.2 Experiments 
 
The main idea here is to enrich the original frailty dataset with a bigger set of unlabeled                 
instances (meaning the frailty class is not available) gathered from twitter public user quotes.              
The exact procedure of data gathering and pre-processing was a subject of ​D4.7 while the               
technical details of the construction of the enriched frailty dataset are presented in ​D4.11​. In               
this report we will focus on the actual use and testing of the augmented semi-supervised               
frailty dataset. 
 
In the series of tests that were performed using semi-supervised learning algorithms, 4             
datasets where constructed using different labeled ratios. With the term labeled ratio, we             
refer to the percentage of labeled instances (instances that have a frailty class) in conjunction               
to the unlabeled instances. The table below summarizes the datasets outlook. 
 
 

Dataset name Labeled ratio Labeled 
instances 

Unlabeled 
instances 

semi-frailty-10 10% 178 1600 

semi-frailty-20 20% 178 712 

semi-frailty-30 30% 178 415 

semi-frailty-40 40% 178 267 

Table 3: Instances that have a frailty class in conjunction to the unlabeled instances 
 
 
The Semi-supervised Classification (SSC) problem can be defined as follows: Let ​x ​

p
be an              

example where ​x ​
p
= (x ​

p1
, x ​

p2 ​, ..., x ​
pD ​, ω) ​, with ​x ​

p
belonging to a class ​ω and a                   

D-dimensional space in which ​x ​
pi

is the value of the i​th feature of the p​th sample. Then, let us                   
assume that there is a labeled set ​L which consists of ​n instances ​x ​

p
with ​ω known.                 

Furthermore, there is an unlabeled set ​U which consists of ​m instances ​x ​
q

with ​ω unknown, let                 
m > n ​. The ​L + U sets form the training set (denoted as ​TR ​). The purpose of SSC is to                     
obtain a robust learned hypothesis using ​TR ​ instead of ​L ​ alone. 
 
 
SSC Taxonomy 
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SSC methods search iteratively for one or several enlarged labeled set(s) (EL) of prototypes              
to efficiently represent the TR. The Self-labeling taxonomy is oriented to categorize the             
algorithms regarding their main aspects related to their operation. The next figure (​figure 9​)              
gives a brief categorization of the SSC algorithms. 
 

 
Figure 9: Brief categorization of the SSC algorithms 

 
In order to apply the Semi-supervised approach in the frailty prediction problem, five of the               
most used used algorithms were selected: 

● SelfTraining​: An iterative method to label the unlabeled data and use them            
afterwards. 

● CoForest​: A semi-supervised algorithm, which exploits the power of ensemble          
learning and large amount of unlabeled data available to produce hypothesis with            
better performance. 

● CoTraining​: Two different views of the data are used to build a pair of              
models/classifiers. 

● TriTraining​: It generates three classifiers from the original labeled examples and then            
is refined using unlabeled examples in the tri-training process. 

● RASCO​: A random subspace method for co-training. 
 
The experiments gave the following in terms of accuracy %: 
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Dataset name SelfTraining 
(C4.5) 

CoForest CoTraining 
(NN,C4.5,NN) 

TriTraining 
(NN,NN,NN) 

RASCO 
(C4.5) 

semi-frailty-10 46.0 50.1 48.1 46.4 47.9 

semi-frailty-20 48.0 47.8 48.2 46.8 42.3 

semi-frailty-30 47.9 51.5 48.1 46.6 46.6 

semi-frailty-40 46.6 48 48.1 46.8 40.1 

Table 4: Accuracy of the Semi-supervised approach 
 

4.7.3 Conclusion 
 
In the previous paragraphs, a few of the most known Semi-supervised methods were applied              
to frailty classification problem. The reason behind the experimentation with this category of             
algorithms was to augment the frailty dataset in hopte to increase the final models              
performance.  
 
Judging the results of the ​Table 4 in contrary with the supervised approach accuracies              
presented in chapter 5, the semi-supervised techniques’ performance were not unrelated to            
those of supervised base classifiers but still they failed to significantly increase the overall              
accuracy. This outcome was not obvious from the beginning, as SSC in general scores good               
results on other areas of application. One should not underestimate that, frailty dataset is a               
very niche one and can not strongly correlate to data gathered from other sources, although               
they were collected with that in mind as described in ​D4.7​. 
 
 
 
 

5. FRAILTY MODEL & TEST RESULTS 
 

5.1 Introduction 
 
The major subject of this report is the test results of the predictive model. In reality,                
everything done in the task is heavily tied with the performance increasement of the final               
model. As has been emphasized in ​chapter 4​, the performance of a model is equally               
influenced by all the previous tasks of the classification process. The parts of feature              
extraction and feature selection are considered as highly important factors of the final             
predictive accuracy and require fairly more expensive resources like human expertise. As the             
above factors are not a hundred percent controlled by this task, a very strong and extensive                
testing process has to be done in order to select the final classification model and ensure the                 
best possible prediction accuracy. 
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This chapter presents the evaluation process followed to obtain the test results, the             
comparison of the various models, the parameters of the selected model and the statistics of               
the final model. Finally, this chapter ends with a brief discussion of the test results, as this is                  
a preliminary report and the model is expected to change, and also a few words about the                 
future steps of development. 
 
 

5.2 Frailty model construction and evaluation 
 
Machine learning offers a wide range of algorithms that can fit the data and build a predictive                 
model. In order to test the possible model performances and select the most suitable for the                
case, an extensive experiment was organized. Totally, seventeen of the most widely used             
classifiers were selected from six different algorithm families. The measured metric was that             
of classification accuracy.  
 
The evaluation method that was used is the classic method of Cross Validation[26]. In              
general, cross validation is a model validation technique for assessing how the results of a               
statistical analysis will generalize to an independent data set. One round of cross-validation             
involves partitioning a sample of data into complementary subsets, performing the analysis            
on one subset (called the training set), and validating the analysis on the other subset (called                
the validation set or testing set). To reduce variability, multiple rounds of cross-validation are              
performed using different partitions, and the validation results are averaged over the rounds.             
One of the main reasons for using cross-validation instead of using the conventional             
validation (e.g. partitioning the data set into two sets of ​70% for training and ​30% for test) is                  
that there is not enough data available to partition it into separate training and test sets                
without losing significant modelling or testing capability. In summary, cross-validation          
combines (averages) measures of fit (prediction error) to derive a more accurate estimate of              
model prediction performance. 
 
The table that follows presents the test results, measured in accuracy percent, for the              
extensive tested scenario, using the 10 fold cross validation method. 
 

Classifier Accuracy % 

NaiveBayes 47.665 

Bayesian Network 41.227 

Support Vector Machine 40.049 

Logistic 56.756 

Neural Network 56.265 

Simple Logistic 61.179 

SMO 56.756 
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KNN 53.071 

KStar 48.157 

LWL 51.105 

AdaBoostM1 43.488 

RotationForest 59.950 

DecisionTable 51.351 

OneR 43.488 

ZeroR 41.277 

DecisionStump 43.481 

HoeffdingTree 56.019 

J48 49.877 

LMT 60.688 

RandomForest 57.248 

RandomTree 44.226 

RepTree 46.928 

JRip 49.385 

PART 50.800 

Table 5: Frailty prediction results per prediction model 
 
Most of the tested models seem to be performing moderately with an average accuracy of               
50.43% with a standard deviation of ​6.58 ​. The outcome was very logical as frailty prediction               
is a very difficult and sensitive problem and is highly correlated to the constructed dataset.  
 
Below are presented the figures of accuracy distribution and the accuracy visualization for             
better understanding of the results. 
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Figure 10: Accuracy distribution 
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Figure 11: Frailty prediction results per prediction model 
 
As has been shown, the performance of the elemental classifier models seems to be              
moderate. In order to enhance the performance of the frailty model, a collection of              
performance boost techniques known as META classifiers was studied. The technique is also             
known as Ensemble learning. 
 
Ensemble methods use multiple learning algorithms to obtain better predictive performance           
than could be obtained from any of the constituent learning algorithms alone. Supervised             
learning algorithms are most commonly described as performing the task of searching            
through a hypothesis space to find a suitable hypothesis that will make good predictions with               
a particular problem. Even if the hypothesis space contains hypotheses that are very             
well-suited for a particular problem, it may be very difficult to find a good one. Ensembles                
combine multiple hypotheses to form a (hopefully) better hypothesis. An ensemble is itself a              
supervised learning algorithm, because it can be trained and then used to make predictions.              
The trained ensemble, therefore, represents a single hypothesis. This hypothesis, however,           
is not necessarily contained within the hypothesis space of the models from which it is built.                
Thus, ensembles can be shown to have more flexibility in the functions they can represent.               
The common ensemble methods include techniques like Bagging, Boosting, Stacking, Voting           
e.t.c. 
 
In our case, the most suitable technique was the Voting algorithm, as we already had               
identified a number of strong basic classifiers from the evaluation process of the elemental              
classifiers and we intent to combine their predictions in order to decrease the number of               
incorrectly classified instances. The Voting meta algorithm gives a number of ways to             
combine the different classifiers’ predictions, the most common are: 
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● Average of classifiers’ prediction probabilities 
● Product of classifiers’ prediction probabilities 
● Majority voting of classifiers’ predictions 
● Median of classifiers’ predictions 
● Minimum/Maximum of classifiers’ prediction probabilities 

 
As it is very well known, machine learning optimization is a highly empirical process, a series                
of trial and error tests had to be conducted in order to pick the most compatible sets, of the                   
strong classifiers, and the best voting method to construct the final ensemble model. The              
performance of the best 5 ensembles is presented in the following table. 
 
 

Num. Of Classifiers Voting Method Classifiers Accuracy% 

3 Product of 
Probabilities 

Simple Logistic, 
LMT, J48 

56.24 

4 Average of 
Probabilities 

Simple Logistic, 
RotationForest, 

LMT, 
RandomForest 

62.89 

4 Majority Voting Simple Logistic, 
RotationForest, 

LMT, RandomForest 

62.1 

5 Average of 
Probabilities 

Simple Logistic, 
LMT, 

RandomForest, 
SMO, LWL  

59.95 

5 Maximum 
Probabilities 

Simple Logistic, 
LMT, 

RandomForest, 
SMO, LWL  

60.19 

Table 6: Performance of the best 5 ensembles in Frailty prediction 
 
The final selected ensemble classifier model that the tests revealed that is was the best               
performer in terms of prediction accuracy, was the Voting of Simple Logistic, RotationForest,             
LMT and RandomForest with the combination rule of Average prediction probabilities, from            
now on referred as ​VoteSRLR​. The selected ensemble achieved an accuracy of ​62.89%             
and was approximately +2% better from the best elemental classifier Simple Logistic.  
 
We managed to further increase the accuracy of VoteSRLR to ​63.64% by further optimizing              
the ensemble parameters as will be presented in the next 2 subparagraphs. 
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5.4 Final model parameters 
 
The final ensemble classifier that was selected to be used in the LingTester tool is               
VoteSRLR. In the tool, an open source java version of this algorithm has been used. This                
version is capable of being tuned by a series of input parameters, mainly giving control of the                 
final structure of the base learners. The available parameters have been gathered along with              
their description in the next table.  
 
The exact values that were used to produce the LingTester tool predictor are also presented               
on the table below. The process of model parameter optimization is a highly empirical              
process, although there have been some efforts in the field, for example Auto-Weka, but still               
no general method exists. 
 

Parameter Name Description Optimum Value 

Voting Algorithm  

Combination Rule The combination to rule used. Average of 
Probabilities 

Simple Logistic  

Error On 
Probabilities 

Use error on the probabilities as error measure 
when determining the best number of LogitBoost 
iterations. 

False 

Weight Trim Beta Set the beta value used for weight trimming in 
LogitBoost. 

0.1 

Use AIC The AIC is used to determine when to stop 
LogitBoost iterations 

False 

Max Boosting 
Iterations 

Sets the maximum number of iterations for 
LogitBoost. 

500 

Heuristic Stop LogitBoost is stopped if no new error minimum 
has been reached in the last Heuristic Stop 
iterations.  

50 

RotationForest  

Removed 
Percentage 

The percentage of instances to be removed. 50 

Max Group Maximum size of a group. 3 

Min Group Minimum size of a group. 3 

Projection Filter The filter used to project the data. Principal 
Components 
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Classifier The base classifier to be used J48 

LMT  

Do Not Make Split 
Point Actual Value 

If true, the split point is not relocated to an actual 
data value. 

False 

Weight Trim Beta Set the beta value used for weight trimming in 
LogitBoost. 

0.0 

Fast Regression Use heuristic that avoids cross-validating the 
number of Logit-Boost iterations at every node. 

True 

Min Num Instances Set the minimum number of instances at which a 
node is considered for splitting. 

15 

Split On Residuals Set splitting criterion based on the residuals of 
LogitBoost. 

True 

Convert Nominal Convert all nominal attributes to binary ones 
before building the tree. 

False 

RandomForest  

Calc Out Of Bag Whether the out-of-bag error is calculated. False 

Max Depth The maximum depth of the tree, 0 for unlimited. 0 

Store Out Of Bag 
Predictions 

Whether to store the out-of-bag predictions. Flase 

Break Ties 
Randomly 

Break ties randomly when several attributes look 
equally good. 

True 

Num Features Sets the number of randomly chosen attributes. 0 

Compute Attribute 
Importance 

Compute attribute importance via mean impurity 
decrease. 

False 

Table 7: Explanation of parameters used 
 
 

5.5 Final model results 

5.5.1 Three class classification results 
 
In the preliminary version of this report a much smaller frailty dataset was available at the                
time, thus a simple J48 model was able to achieve a ​64% accuracy. The old tree model had                  
the following simple decision structure. 
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Figure 13: Old Decision tree visualization 
 
As this is the final version of the document, the FrailSafe dataset is already bigger than                
double and the old Decision Tree model as tested in section 6.3 could only score an                
accuracy of ​49.87% ​. The complexity of the dataset has increased with the introduction of              
new instances and more information(french speaking participants were also added). 
 
For this reason a there was an argent need to construct a new learning model with higher                 
information capacity that could also be re-trained and used with the future FrailSafe datasets.              
This led to the development of VoteSRLR which is already able to achieve almost the same                
accuracy of the old model with more complex datasets. As frailty prediction is a very hard                
problem bound to the participants profile, further prediction accuracy increments could lie on             
the enrichment of dataset. 
 
The final ensemble model that is embedded to the LingTester tool is capable of predicting the                
three possible frailty conditions (nonfrail, prefrail, frail) by an average prediction ​accuracy of             
63.64% for out of sample instances. A statistical analysis of the model has been conducted               
and the most important metrics are presented below.  
 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         259               63.64 % 

Incorrectly Classified Instances       148               36.36 % 

Kappa statistic                          0.4331 

Mean absolute error                      0.3453 

Root mean squared error                  0.4116 

Relative absolute error                 79.4175 % 

Root relative squared error             88.2764 % 

Total Number of Instances              407  

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.729    0.202    0.654      0.729    0.689      0.514    0.830     0.684     nonfrail 
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                 0.649    0.314    0.592      0.649    0.619      0.331    0.713     0.604     prefrail 

                 0.485    0.062    0.716      0.485    0.578      0.490    0.796     0.643     frail 

Weighted Avg.    0.636    0.214    0.644      0.636    0.633      0.433    0.773     0.641  

 

=== Confusion Matrix === 

 

   a   b   c   <-- classified as 

 102  34   4 |   a = nonfrail 

  44 109  15 |   b = prefrail 

  10  41  48 |   c = frail 

Figure 14: Decision tree model results 
 
At the end of the results above, the confusion matrix for the corresponding model is also                
shown. From the confusion matrix one can extract useful evaluation metrics like false             
positives, negatives and generally calculate indicators known as precision & recall. 

 

5.5.2 A simplification: Binary classification approach 
 
As the main model involves the three frailty classes, was expected to have a higher decision                
complexity and proportionally lower accuracy. Apart from further future dataset population           
and attempt was made to decrease the decision complexity of the frailty prediction problem.              
A common technique employed is the reduction of the number of classes by combining or               
removing similar classes. In this section and clearly for testing and evaluation purposes, a              
similar strategy was employed for the dataset.  
 
In more detail, as a first attempt to reduce the decision complexity, the Prefrail class was                
combined with that of Frail class, thus the instances that were labeled as prefrail were               
renamed as frail and the training and evaluation process was again deployed. The results              
were promising, the prediction accuracy was significantly increased to ​78.62% ​. The           
difference was approximately ​15% more than the three class classification problem. The            
results were expected as the decision complexity regarding the frailty status of a participant              
in evaluation was significantly lower. Below are shown the exact statistical results and the              
corresponding confusion matrix. 
 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         320               78.6241 % 

Incorrectly Classified Instances        87               21.3759 % 

Kappa statistic                          0.5054 

Mean absolute error                      0.3154 

Root mean squared error                  0.3874 

Relative absolute error                 69.851  % 

Root relative squared error             81.5609 % 

Total Number of Instances              407  

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.600    0.116    0.730      0.600    0.659      0.511    0.847     0.718     nonfrail 

                 0.884    0.400    0.808      0.884    0.844      0.511    0.847     0.907     frail 

Weighted Avg.    0.786    0.302    0.781      0.786    0.781      0.511    0.847     0.842  

 

=== Confusion Matrix === 
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   a   b   <-- classified as 

  84  56 |   a = nonfrail 

  31 236 |   b = frail 

 

Figure 15: Results of the final prediction model 
 
 
A second attempt to further reduce the decision complexity was made. In this case, the class                
Prefrail along with its corresponding instances were completely removed from the dataset in             
order to create a more clear decision boundary between data. This method increased the              
accuracy even more, scoring a ​83.68% ​. The difference in the accuracy between the 3 class               
frailty problem and the binary one is now a stunning ​20% ​, the downside of this approach is                 
that a lot of instances are removed, thus reducing the dataset size. The following table               
summarizes the experiment results. 
 
 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances         200               83.682  % 

Incorrectly Classified Instances        39               16.318  % 

Kappa statistic                          0.6632 

Mean absolute error                      0.2737 

Root mean squared error                  0.3602 

Relative absolute error                 56.3794 % 

Root relative squared error             73.1229 % 

Total Number of Instances              239  

 

=== Detailed Accuracy By Class === 

 

                 TP Rate  FP Rate  Precision  Recall   F-Measure  MCC      ROC Area  PRC Area  Class 

                 0.864    0.202    0.858      0.864    0.861      0.663    0.888     0.916     nonfrail 

                 0.798    0.136    0.806      0.798    0.802      0.663    0.888     0.860     frail 

Weighted Avg.    0.837    0.175    0.837      0.837    0.837      0.663    0.888     0.893  

 

=== Confusion Matrix === 

 

   a   b   <-- classified as 

 121  19 |   a = nonfrail 

  20  79 |   b = frail 

 

 

Figure 16: Results of the final prediction model without the prefrail class 

 
5.6 Frailty Transition 

 
Another aspect of the frailty classification, is the transition on time of the frailty status of a                 
participant. As the dataset evolves in the future and the clinical evaluation records increase,              
correlations between the change in frailty status and the extracted features can be revealed.              
As at the time of writing of this report, very few of the participants already have follow up                  
records and almost none shows significant changes in his frailty status.  
 
However, a software function was implemented with future in mind, that gives the capability              
for such studies to be conducted. The idea behind the observation of frailty transition is that,                
at any given time the offline-parser python script is able to produce differential datasets. By               
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differential we mean, an algorithm that computes the scores of specific quantitative features             
between the clinical evaluations and creates derivative features that they decipit the score             
difference (transition) for each of them corresponding to a frailty transition status. The             
possible frailty transition statuses are: 

 

Transition value 

nonfrail_to_prefrail 

prefrail_to_nonfrail 

prefrail_to_frail 

frail_to_prefrail 

nonfrail_to_frail 

frail_to_nonfrail 

Table 8: Possible transition values 
 
An example dataset has been produced taking in account the participant records as             
appeared in eCRF up to M22. 
 

 
Figure 17: Example dataset for transision strudy 

 
As the transition dataset at this time does not have rich information value, no analysis can be                 
conducted. In the near future, the FrailSafe project as planned, possibly will have enough              
collected data to be used as an input for the transition dataset creator. At that time, machine                 
learning & statistical analysis approaches can be applied with the same tools that were              
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presented in this document and possibly correlate the transitional data to frailty status             
changes. 
 
 

5.7 Discussion of the results 
 
This chapter was devoted to the evaluation process and the extraction of the according              
evaluation metrics. A large experiment was organized and the twenty five of the most known               
models were trained and evaluated. 
 
The final model that was selected to be embedded to the LingTester tool, was a complex                
Meta classifier that bases its predictions on the average probabilities extracted by the base              
classifier Simple Logistic, RotationForest, LMT, RandomForest. It was selected due to its            
accuracy superiority, in comparison with the other evaluated algorithms, and also due to its              
learning capacity.  
 
The accuracy for the selected classifier was achieved after the parameter optimization            
process and was around ​63.64% for three class classification problem. Further increase of             
the prediction performance could possibly lie on the qualitative and quantitative increase of             
future population of participants data or by further optimizing the model parameters. 
 
Binary classification is also an approach that was evaluated and seems tο perform relatively              
good mainly to the reduction of decision complexity. The achieved accuracy of this technique              
was at the levels of ​83.68% ​. Further exploration of the approach may reveal useful relations               
between the dataset features and parameters. 

 
 
5.8 Package Future 

 
Although this is a final report, the FrailSafe project will still continue to gather data from                
partners and for a long time. We think this was a good first approach to the frailty prediction                  
task in proportion to the data and operating structures we had available for use.  
 
All the tools and algorithms developed and presented in this report can be reapplied in the                
future of FrailSafe project, as they were designed with user friendliness and simplicity in              
mind. It is almost certain that as the data collection from the participants continues prediction               
models can further learn and increase their performance and accuracy. It seems promising             
to, on the one hand to evaluate the models in real case scenarios during the FrailSafe project                 
and on the other hand to feedforward the system with this experience.  
 
Another important aspect of the package is its ability to log almost every possible derived               
information so other packages can retract it from the central FrailSafe database and built              
upon on LingTester’s output. 
 
 

- 45 - 



FRAILSAFE – H2020-PHC–690140 ​D4.13 

6. SUICIDAL TENDENCIES DETECTION 
 

6.1 Introduction 
 
The study of suicide risk is complex. Suicide is a medical disaster, but occurs at a relatively                 
low frequency. The extensive body of suicide and self harm risk research has identified many               
risk factors, among them: diagnosed mental disorders, substance abuse, and a history of             
prior suicide attempts. However, much of this research has been based on retrospective             
study of suicide attempters and completers. The rarity of suicidal behavior limits the             
specificity of predicting future suicidal behavior based on relatively common risk factors. A             
recent survey of literature on screening tools to predict suicide attempts and death by suicide               
concluded that current evidence is insufficient to support reliance on screening tools based             
on presence or absence of risk factors in clinical practice [2], and so, the current standard of                 
care for the at-risk patient remains in the domain of a skilled clinical assessment. 
 
 
 

6.2 State of the art 
 
Fine-grained automatic emotion detection can benefit from from classifier optimization and a            
combined lexico-semantic feature representation can achieve scores up to ​68.86% F-score           
[4]. Corpus for model construction and prediction has been a note corpus of positive only               
data, annotated with fine-grained emotions, released in the framework of the 2011 i2b2 NLP              
Challenge on emotion classification in suicide notes [5], allowing research on which emotions             
might be indicative of suicidal behavior, and how they can be found automatically. However,              
this dataset is no longer available. Also, vocabulary based methodology, manually annotated            
on Twitter posts and then classification using various classifier could not produce more than              
64% ​ accuracy [6]. 
 
 

6.3 Database construction 
 
According to the predefined work packages, no information could be available to identify             
suicidal patients, so a different approach was selected to create our dataset. We identified              
the Goodreads web page as a potential source for our scope. Among other things, this web                2

page provides famous quotes from known books, which have been manually saved by the              
Goodreads community. This manual process also forces each user to tag the quote with at               
least one keyword, and therefore various categories have appeared. A crawler for this             
purpose was constructed to identify and download all quotes set by the researchers, split in               
two main groups: 

● suicide: quotes identified by the following keywords 
○ suicide, 
○ suicide-note, 

2 https://www.goodreads.com/ 
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○ suicide-attempt and 
○ suicidal-thoughts 

● non-suicide: quotes identified by the following keywords 
○ humor and 
○ happy 

 
To avoid an unbalanced dataset, the second category was filled randomly till we had the               
same amount of quotes in both categories. After the data collection, each group has 3184               
instances. 
 
 

6.4 Feature extraction 
 
Feature extraction was based on the same methodology as stated before, for the frailty              
prediction model. The derived feature space used for suicidal tendencies detection was            
intentionally kept familiar with the frailty feature space for consistency reasons. In contrast             
with the frailty detection process, the current task lacks the eCRF API data. Below, follows a                
brief description of the feature space in ​table 9​. 

 

Feature Names Feature Description 

● class 
○ suicide 
○ non-suicide 

goodreads crawler labels 
(see Annex 1 for details) 

● text_length 
● number_of_sentences 
● number_of_words 
● number_of_words_per_sentence 
● text_entropy 

Statistical Measures 

● sentiment Sentiment Analysis of text data 

● misspelled Percent of misspelled words based on 
known vocabulary 

● tf-0 
● tf-1 
● ... 

Term frequency – Inverse document 
frequency, after feature selection based on 
information gain 

● flesch_reading_ease 
● smog_index 
● flesch_kincaid_grade 
● coleman_liau_index 
● automated_readability_index 
● dale_chall_readability_score 
● difficult_words 
● linsear_write_formula 
● gunning_fog 

Readability score 
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Table 9: List of features for suicidal tendency prediction 
 
 

6.5 Information gain and Feature selection 
 
Also, feature selection and information gain was implemented to lower the dimensionality of             
features, while also removing excessive noise from the Tf-IDF feature extraction. 

 
 

Figure 17: Distribution of information gain per available feature for the suicidal prediction             
model, based on Goodreads manually saved quotes. 
 
 

6.6  Suicide tendency prediction 
 
In order to detect suicidal signs in written text, a series of tests on classification models had                 
to be run. A case-study video has been created and displayed among partners, from which               
screenshots can be found in Annex 10.2 of current report. 
 
The classifiers deployed where the very common in text classification `Naive Bayes’, the             
classic `Decision Trees’ implementation (J48) and the more complex trees model known as             
`Rotation Forest’. The tests ran on the extracted feature space mentioned in ​section 5.4              
using 10 - cross validation on the training dataset constructed as explained in the previous               
sections.  
 
The results of the experiment are presented in detail below. The following table summarizes              
the accuracies of the models along with the figure, giving a better visual comparison. Next,               
the detailed statistical measures of best performing model are shown. 
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Classifier Accuracy % 

NaiveBayes 68.35 

J48 69.26 

RotationForest 71.04 

RandomTree 62.03 

DecisionStump 55.76 

SMO 71.15 

KNN 65.07 

OneR 52.03 

JRip 64.02 

Vote (RotationForest,SMO) 71.15 

Table 10: Suicide tendency prediction accuracy per classifier  
 
 

 
Figure 18: Suicide tendency prediction accuracy per classifier  

 
 

=== Stratified cross-validation === 

=== Summary === 

 

Correctly Classified Instances        4533               71.1505 % 

Incorrectly Classified Instances      1838               28.8495 % 

Kappa statistic                          0.423  

Mean absolute error                      0.2885 

- 49 - 



FRAILSAFE – H2020-PHC–690140 ​D4.13 

 

Root mean squared error                  0.5371 

Relative absolute error                 57.6989 % 

Root relative squared error            107.4234 % 

Total Number of Instances             6371  

 

=== Detailed Accuracy By Class === 

 

               TP Rate   FP Rate   Precision   Recall  F-Measure   ROC Area  Class 

                 0.538     0.115      0.824     0.538     0.651      0.711    suicide 

                 0.885     0.462      0.657     0.885     0.754      0.711    non-suicide 

Weighted Avg.    0.712     0.289      0.74      0.712     0.703      0.711 

 

=== Confusion Matrix === 

 

    a    b   <-- classified as 

 1714 1471 |    a = suicide 

  367 2819 |    b = non-suicide 

 

Figure 19: detailed statistical measures of Rotation Forest performing model 
 
The SMO model seems to be superior according to the accuracy comparison of the models.               
Thus, the relating subject is very sensitive and important, decision to alert the involved              
people can not be made only by judging the accuracy metric. 
 

 
7. ETHICS AND SAFETY 

 
 
Throughout the construction of the offline Lingtester tool, legal issues were kept in mind so               
as to protect sensitive information.  
 
First of all, as described before data anonymization is used, which confirms that the              
participants of the clinical trials can not be linked to their own data. The database where the                 
collected data is stored, is always kept of offline, this fact ensures the impossibility of               
unauthorised access of the data. Furthermore, the LingTester tool in order to make its              
predictions uses an exported and pre-computed (at training phase) model thus securing the             
independence of participants’ training data and the tool which can be deployed on less              
secure environments. 
 
Moreover, the data persistence and analysis will comply with the data protection guidelines             
reported in deliverable "​D9.9​: Ethics, Safety and Health Barriers" (Section 6) with the aim of,               
at same time, keeping the maximum level of security and privacy of the data and allowing the                 
successful performance of the other tasks of the project. Moreover, data will be obtained in               
accordance to the local ethics requirements. Any information regarding the participants will            
be treated as sensitive personal data (as defined in deliverable ​D9.9​) and kept strictly private.               
Future provided data will be thoroughly checked by semi-automatic algorithms in order to             
anonymize any personal identifiers like full names, dates, emails, communication cellphone           
or landline numbers – hence falling outside the scope of legislation concerning personal data. 
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Finally, the participants are already, fully informed and agree to share their clinical data with               
the FrailSafe program. In any time during the program they retain the right to quit the data                 
collection process according to their will. 
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9. FILE STRUCTURE 

 
● Folder: Deliverable 

○ File: fraildata_v11a_tfidf_ngram1_1.arff 
■ Extracted dataset 

○ File: fraildata_feature_selected.arff 
■ Feature selected dataset 

○ File: fraildata_feature_selected_binary.arff 
■ Binary feature selected dataset 

○ File: fraildata_feature_selected_binary_removed_instances.arff 
■ Binary via instance removement feature selected dataset 

○ File: suicide_v1c_withtfidf_30_ngram1.arff 
■ Suicide constructed dataset 

○ File: final_model.model 
■ Built frailty predictive model 

○ File: suicide_model.model 
■ Built suicide predictive model 

○ File: offline-parser.py 
■ Python script for feature extraction - creation & dataset creation 

○ File: goodreads-downloader.py 
■ Python crawler script for the suicidal dataset 
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10. ANNEXES 
 

10.1 Goodreads crawler 
File: goodreads-downloader.py 
 
# -*- coding: utf-8 -*- 

""" 

@author: Charalampos 

""" 

 

import​ ​math​, ​numpy​, ​pickle​, ​nltk 
import​ ​matplotlib.pyplot​ ​as​ ​plt 
 

import​ ​urllib2 
import​ ​pickle 
import​ ​re 
op = ​__import__ ​( ​"offline-parser" ​) 
from​ ​textstat.textstat​ ​import​ textstat 
 

main_page =  

'http://www.goodreads.com/quotes' 

history_file =  

'goodreads-downloader.history.pickle' 

quotes_file =  

'goodreads-downloader.quotes.csv' 

 

default_suicide_groups = [ ​'suicide' ​,   

'sadness' ​, ​'suicide-note' ​,  

'suicide-attempt' ​, ​'suicidal-thoughts' ​] 
default_non_suicide_groups = [ ​'humor' ​,   

'happy' ​] 
 

def ​sortedDictValues​(adict, reverse_order   

= ​True ​): 
    ​""" 

Taksinomisi leksikou, simfwna me to      

"value" 

 

http://wiki.python.org/moin/HowTo/Sorting/ 

    """ 

    ret = [] 

    ​for​ k ​in​ adict: 
        ret.append( (k, adict[k]) ) 

  

ret = ​sorted ​(ret, key= ​lambda tdf:      

tdf[ ​1​], reverse = reverse_order) 
 

    ​return​ [page[ ​0​] ​for​ page ​in​ ret] 
 

def​ ​historySave​(history_to_save): 
    f = ​open ​(history_file, ​'w' ​) 
    pickle.dump(history_to_save, f) 

    f.close() 

 

def​ ​historyLoad​(): 
    history_to_load = {} 

    ​try​: 
        f = ​open ​(history_file, ​'r' ​) 
        history_to_load = pickle.load(f) 

        f.close() 

    ​except​: 
        ​pass 
  

    ​return​ history_to_load 
 

def​ ​quotesSave​(quotes_to_save): 
    f = ​open ​(quotes_file, ​'w' ​) 
    ​for​ k ​in​ quotes_to_save: 

f.write( ​" ​%s ​\t​%s ​\n​" %   

( ​'|' ​.join(quotes_to_save[k][ ​'t' ​]), k)) 
    f.close() 

 

def​ ​quotesLoad​(): 
    quotes_to_load = {} 

    ​try​: 
        f = ​open ​(quotes_file, ​'r' ​) 
        lines = f.readlines() 

        f.close() 

        ​for​ k ​in​ lines: 
            k = k.strip() 

            qtags, qtext = k.split( ​" ​\t​" ​) 
            qtags = qtags.strip() 

            qtext = qtext.strip() 

            ​if​ qtags == qtext: 
                ​continue 
  

quotes_to_load[qtext] = { ​'q' ​:    

qtext, ​'t' ​: qtags.split( ​'|' ​)} 
    ​except​: 
        ​pass 
  

    ​return​ quotes_to_load 
 

def​ ​quotesByTag​(): 
    ​print​ ​'Loading..' ​, 
    quotes = quotesLoad() 

    ​print​ ​'Done!' 
  

    ​print​ ​'Transforming..' ​, 
    quotes_to_return = {} 

    res = ​len ​(quotes) / ​10 
    ​for​ q ​in​ quotes: 
        res -= ​1 
        ​if​ res < ​0​: 
            res = ​len ​(quotes) / ​10 
            ​print​ ​'.' ​, 
  

        quote = quotes[q] 

        ​for​ t ​in​ quote[ ​'t' ​]: 
            ​if​ ​not​ t ​in​ quotes_to_return: 
                quotes_to_return[t] = {} 

  

 

quotes_to_return[t][quote[ ​'q' ​]] = quote 
    ​print​ ​'Done!' 
  

    ​return​ quotes_to_return 
 

def​ ​getQuotes​(tag, page, history): 
    url_to_fetch = main_page 

    ​if​ tag != ​'' ​: 
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        url_to_fetch += ​'/tag/' ​ + tag 
  

    ​if​ page > ​1​: 
url_to_fetch += ​'?page=' +     

str ​(page) 
  

    ​if​ tag == ​'' ​: 
​print ​"Fetching all quotes, page      

%d ​" ​ % page, 
    ​else​: 

​print ​"Fetching quotes for ​%s ​,      

page ​%d ​" ​ % (tag, page), 
  

    ​try​: 
request =   

urllib2.Request(url_to_fetch) 

contents =   

urllib2.urlopen(request).read() 

    ​except​: 
        ​print​ ​'..Error!' 
        ​return​ ​None 
  

contents = contents.replace( ​'&ldquo;' ​,    

'' ​) 
contents = contents.replace( ​'&rdquo;' ​,    

'' ​) 
contents = contents.replace( ​'&#8213;' ​,    

'' ​) 
    contents = contents.replace( ​" ​\n​" ​, ​'' ​) 
  

    new_tags = ​0 
​for m ​in    

re.finditer( ​'\/quotes\/tag\/([a-z\-]+)' ​, 
contents): 

        tag = m.group( ​1​) 
        ​if​ ​not​ tag ​in​ history: 
            history[tag] = ​0 
            new_tags += ​1 
  

    ​if​ new_tags > ​0​: 
        ​print​ ​'.. ​%d ​ new tags' ​ % new_tags, 
        historySave(history) 

  

contents = contents.replace( ​'<div    

class="quote mediumText ">' ​, ​"<div    

class='quote'>" ​) 
​# contents =    

contents.replace('quoteText">', 

"quoteText'>") 

 

text_quotes = contents.split( ​"<div    

class='quote'>" ​) 
    ​# Useless 
    ​del​ text_quotes[ ​0​] 
  

    quotes_to_return = {} 

    ​for​ q ​in​ text_quotes: 
m = re.search( ​'quoteText">(.*?)<' ​,    

q) 

qtext =   

m.group( ​1​).strip().replace( ​" ​\t​" ​, ​'' ​) 
        ​if​ qtext == ​'' ​: 
            ​continue 
 

        ctags = [] 

​for m ​in    

re.finditer( ​'\/quotes\/tag\/([a-z\-]+)' ​, 

q): 

​if m.group( ​1​).strip() == ​'' ​or      

m.group( ​1​).strip() == qtext: 
                ​continue 
  

            ctags.append(m.group( ​1​)) 
  

        ​if​ ​len ​(ctags) <= ​0​: 
            ​continue  

  

quotes_to_return[qtext] = { ​'q' ​:    

qtext, ​'t' ​: ctags} 
  

​print ​' ​%d quotes' %     

len ​(quotes_to_return), 
    ​print​ ​'..Done!' 
  

    ​return​ quotes_to_return 
    ​# print quotes_to_return 
    ​# print contents 
 

def ​getTagsByGroup​(includeGroups,  

excludeGroups = [], quotes_by_tag = ​None ​,      

no_more_than = ​0​): 
    ​if​ quotes_by_tag ​is​ ​None ​: 
        quotes_by_tag = quotesByTag() 

  

    excluded = {} 

    ​for​ g ​in​ excludeGroups: 
        ​for​ q ​in​ quotes_by_tag[g]: 
            quote = quotes_by_tag[g][q] 

            excluded[ quote[ ​'q' ​] ] = ​True 
  

    selected = {} 

    ​for​ g ​in​ includeGroups: 
        ​for​ q ​in​ quotes_by_tag[g]: 
            quote = quotes_by_tag[g][q] 

            ​if​ quote[ ​'q' ​] ​in​ excluded: 
                ​continue 
  

            selected[ quote[ ​'q' ​] ] = quote 
​if no_more_than > ​0 ​and      

len ​(selected) >= no_more_than: 
                ​break 
  

    ​return​ selected 
 

def ​getSeperateGroups​(suicideGroups,  

nonSuicideGroups, quotes_by_tag = ​None ​): 
    ​if​ quotes_by_tag ​is​ ​None ​: 
        quotes_by_tag = quotesByTag() 

  

group1 = getTagsByGroup(suicideGroups,    

nonSuicideGroups, quotes_by_tag) 

group2 =   

getTagsByGroup(nonSuicideGroups, 

suicideGroups, quotes_by_tag, ​len ​(group1)) 
  

​print ​"suicide group: ​%d ​" %      

len ​(group1) 
​print ​"NON suicide group: ​%d ​" %       

len ​(group2) 
    ​return​ group1, group2 
 

def​ ​startWorking​(): 
    quotes = quotesLoad() 

    history = historyLoad() 
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    ​if​ ​not​ ​'' ​ ​in​ history: 
        history[ ​'' ​] = ​0 
        historySave(history) 

  

​# for tag in ['suicide', 'sadness',       

'suffering', 'suicide-note',  

'failed-attempt', 'suicide-attempt',  

'suicidal-thoughts']: 

    ​#     if not tag in history: 
    ​#         history[tag] = 0 
  

​print ​" ​%d tags in my history" %        

len ​(history) 
​print ​" ​%d quotes already" %      

len ​(quotes) 
  

    added = ​True 
    ​while​ added: 
        added = ​False 
        ​for​ tag ​in​ history.keys(): 
            ​if​ history[tag] >= ​100​: 
                ​continue 
  

​print ​'Tag " ​%s ​", page ​%d ​' %       

(tag, history[tag]) 

            lenbefore = ​len ​(quotes) 
            ​while​ history[tag] < ​100​: 
                history[tag] += ​1 

new_quotes =   

getQuotes(tag, history[tag], history) 

                ​if​ ​len ​(new_quotes) <= ​0​: 
                    history[tag] = ​100 
  

                quotes.update(new_quotes) 

  

            lenafter = ​len ​(quotes) 
  

            ​if​ lenafter > lenbefore: 
                added = ​True 

​print ​'Saving ​%d new     

quotes' ​ % (lenafter - lenbefore), 
                quotesSave(quotes) 

                ​print​ ​'..Done' 
            historySave(history) 

  

    ​print​ ​"Update ended" 
 

def ​create_arff​(relation = ​'suicide' ​,    

includeTFIDF = ​True ​, group_suicide = ​None ​,      

group_non_suicide = ​None ​, TFIDF_thres =     

20​): 
​"""Create arff for WEKA with all       

features availiable 

    """ 

    out = [] 

    out.append( ​'@RELATION ​%s ​' ​ % relation) 
    out.append( ​'' ​) 
  

    other_attributes = [] 

 

other_attributes.append( ​'get_feature_lengt
h' ​) 
 

other_attributes.append( ​'get_feature_numbe
r_of_sentences' ​) 
 

other_attributes.append( ​'get_feature_word_

count' ​) 
 

other_attributes.append( ​'get_feature_words
_per_sentence' ​) 
 

other_attributes.append( ​'get_feature_text_
shannon_entropy' ​) 
 

    ​for​ attr ​in​ other_attributes: 
        call = ​getattr ​(op, attr) 

out.append( ​'@ATTRIBUTE ​%s ​%s ​' %     

(call( ​'' ​, ​'title' ​), call( ​'' ​, ​'type' ​))) 
  

    read_scores = [] 

 

read_scores.append( ​'flesch_reading_ease' ​) 
    read_scores.append( ​'smog_index' ​) 
 

read_scores.append( ​'flesch_kincaid_grade' ​) 
 

read_scores.append( ​'coleman_liau_index' ​) 
 

read_scores.append( ​'automated_readability_
index' ​) 
 

read_scores.append( ​'dale_chall_readability
_score' ​) 
    read_scores.append( ​'difficult_words' ​) 
 

read_scores.append( ​'linsear_write_formula'
) 

    read_scores.append( ​'gunning_fog' ​) 
    ​for​ attr ​in​ read_scores: 

out.append( ​'@ATTRIBUTE ​%s ​%s ​' %     

(attr, ​'real' ​)) 
  

out.append( ​'@ATTRIBUTE ​%s ​%s ​' %     

( ​'sentiment' ​, ​'real' ​)) 
out.append( ​'@ATTRIBUTE ​%s ​%s ​' %     

( ​'misspelled' ​, ​'real' ​)) 
 

    ​if​ group_suicide ​is​ ​None ​: 
group_suicide =   

default_suicide_groups 

    ​if​ group_non_suicide ​is​ ​None ​: 
group_non_suicide =   

default_non_suicide_groups 

results =   

getSeperateGroups(group_suicide, 

group_non_suicide) 

    group_suicide_quotes = results[ ​0​] 
    group_non_suicide_quotes = results[ ​1​] 
 

    filename = ​'ARFFS/ ​%s ​.arff' ​ % relation 
  

  

    texts = [] 

    ​if​ includeTFIDF: 
s, score_words =    

compute_ig({ ​'suicide' ​: 
group_suicide_quotes, ​'non-suicide' ​:  

group_non_suicide_quotes}) 

  

        mywords = s[:TFIDF_thres] 

  

        ​for​ q ​in​ group_suicide_quotes: 
temptext =   

- 57 - 



FRAILSAFE – H2020-PHC–690140 ​D4.13 

group_suicide_quotes[q][ ​'q' ​] 
            temptext_out = [] 

​for word ​in temptext.split( ​'     

' ​): 
                word = word.lower() 

word = re.sub( ​r'([^a-z    

])' ​, ​'' ​, word) 
​if word != ​'' ​and word ​in        

mywords: 

 

temptext_out.append(word) 

  

texts.append( ​'  

' ​.join(temptext_out)) 
 

        ​for​ q ​in​ group_non_suicide_quotes: 
temptext =   

group_non_suicide_quotes[q][ ​'q' ​] 
            temptext_out = [] 

​for word ​in temptext.split( ​'     

' ​): 
                word = word.lower() 

word = re.sub( ​r'([^a-z    

])' ​, ​'' ​, word) 
​if word != ​'' ​and word ​in        

mywords: 

 

temptext_out.append(word) 

  

texts.append( ​'  

' ​.join(temptext_out)) 
  

        ​# TF-IDF on stemmed text 
tf =   

op.TfidfVectorizer(analyzer= ​'word' ​, 
ngram_range=( ​1​, ​1​), min_df = ​0​) 

tfidf_matrix =   

tf.fit_transform(texts) 

feature_names =   

tf.get_feature_names() 

​print ​"TF-IDF ​%d features" %      

len ​(feature_names) 
  

fp = ​open ​(filename + ​'.tf.pickle' ​,      

'w' ​) 
pickle.dump({ ​'tf' ​: tf,   

'tfidf_matrix' ​: tfidf_matrix,  

'feature_names' ​: feature_names, ​'s' ​: s,    

'score_words' ​: score_words, ​'mywords' ​:   

mywords}, fp) 

        fp.close() 

 

​for i ​in    

range ​( ​len ​(feature_names)): 
out.append( ​'@ATTRIBUTE tf- ​%d   

real ​%% ​ ​%s ​' ​ % (i, feature_names[i])) 
  

​# The following creates an "array       

to big" error 

        ​# dense = tfidf_matrix.todense() 
 

    ​# Class always must go last 
out.append( ​'@ATTRIBUTE ​%s { ​%s ​}' %     

( ​'class' ​, ​',' ​.join([ ​'suicide' ​,  

'non-suicide' ​]))) 
 

    out.append( ​'' ​) 

    out.append( ​'@DATA' ​) 
    out.append( ​'' ​) 
  

    ​print​ ​'Creating ARFF rows' ​, 
    f = ​open ​(filename, ​'w' ​) 
    f.write( ​" ​\n​" ​.join(out).encode( ​'utf8' ​))  

    f.write( ​" ​\n​" ​) 
 

all_quotes = ​len ​(group_suicide_quotes)    

+ ​len ​(group_non_suicide) 
    rows_so_far = all_quotes / ​10 
    i = ​0 
    ​for​ tag ​in​ [ ​'suicide' ​, ​'non-suicide' ​]: 
        ​if​ tag == ​'suicide' ​: 

my_quotes =   

group_suicide_quotes 

        ​else​: 
my_quotes =   

group_non_suicide_quotes 

  

        ​for​ q ​in​ my_quotes: 
            rows_so_far -= ​1 
            ​if​ rows_so_far <= ​0​: 
                ​print​ ​'.' ​, 

rows_so_far = all_quotes /     

10 

  

            clang = ​'english' 
            qtext = my_quotes[q][ ​'q' ​] 
            row = [] 

  

            ​for​ attr ​in​ other_attributes: 
                call = ​getattr ​(op, attr) 

row.append( ​str ​(call(qtext,  

lang = clang))) 

  

            ​for​ attr ​in​ read_scores: 
call = ​getattr ​(textstat,    

attr) 

 

row.append( ​str ​(call(qtext))) 
  

​# Sentiment score is based in       

the english translation 

 

row.append( ​str ​(op.get_feature_sentiment_sc
ore(qtext, lang = clang))) 

  

            ​# Mispelling score 
 

row.append( ​str ​(op.get_feature_mispelling_s
core(qtext, lang = clang))) 

  

            ​if​ includeTFIDF: 
​# tf-idf based on stemmed      

data 

                ​# p = dense[i].tolist()[0] 
p =   

tfidf_matrix[i,:].toarray()[ ​0​] 
​for fi ​in    

range ​( ​len ​(feature_names)): 
row.append( ​' ​%.3f ​' %   

p[fi]) 

  

            row.append(tag) 
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f.write( ​',' ​.join(row).encode( ​'utf8' ​)) 
            f.write( ​" ​\n​" ​) 
  

            i += ​1 
  

    f.close() 

    ​print​ ​'..Done' 
 

def​ ​compute_ig​(quotes_per_tag): 
    ​""" 
    compute_ig(): 

Compute information gain for each      

word 

    """ 

    ​# With a little bit of help 
​#  

http://streamhacker.com/tag/information-ga

in/ 

  

​from ​nltk.metrics ​import    

BigramAssocMeasures 

  

    word_count_per_class = {} 

    all_word_count_per_class = {} 

    word_count_per_word = {} 

    all_words = ​0 
  

    ​print​ ​"Loading files for ig.." ​, 
    ​for​ tclass ​in​ quotes_per_tag: 
        word_count_per_class[tclass] = {} 

all_word_count_per_class[tclass] =   

0 

i = ​len ​(quotes_per_tag[tclass]) /     

10 

​for quote ​in    

quotes_per_tag[tclass]: 

            i -= ​1 
            ​if​ i <= ​0​: 
                ​print​ ​'.' ​, 

i =   

len ​(quotes_per_tag[tclass]) / ​10 
  

data =   

quotes_per_tag[tclass][quote][ ​'q' ​].split( ​' 
' ​) 
  

            ​for​ w ​in​ data: 
                w = w.lower() 

w = re.sub( ​r'([^a-z])' ​,    

'' ​, w) 
  

                ​if​ w == ​'' ​: 
                    ​continue 
  

 

word_count_per_class[tclass][w] =  

word_count_per_class[tclass].get(w, ​0​) + ​1 
 

all_word_count_per_class[tclass] += ​1 
word_count_per_word[w] =   

word_count_per_word.get(w, ​0​) + ​1 
                all_words += ​1 
  

            ​del​ data 
  

    ​print​ ​"Evaluating.." ​, 
    i = ​int ​( ​len ​(word_count_per_word) / ​10​)  

    score_per_word = {} 

    ​for​ w ​in​ word_count_per_word: 
        i -= ​1 
        ​if​ i <= ​0​: 
            ​print​ ​',' ​, 

i =   

int ​( ​len ​(word_count_per_word) / ​10​) 
  

        freq = word_count_per_word[w] 

        score_per_word[w] = ​0 
  

        ​for​ c ​in​ word_count_per_class: 
score_per_word[w] +=   

BigramAssocMeasures.chi_sq(word_count_per_

class[c].get(w, ​0​), (freq,   

all_word_count_per_class[c]), all_words) 

  

​del word_count_per_class,   

all_word_count_per_class, 

word_count_per_word 

  

    ​print​ ​"Sorting.." ​, 
    s = sortedDictValues(score_per_word) 

    ​print​ ​"..Done" 
    ​# del score_per_word 
  

    ​print​ ​"..Done" 
 

    nums = [] 

    ​for​ w ​in​ s: 
        nums.append(score_per_word[w]) 

 

    ​print​ ​"Creating ig histogram" ​, 
plt.figure(figsize = ( ​24​, ​int ​( ​24.0 *      

9.0​ / ​16.0​)),) 
​#  

plt.hist(numpy.asarray(score_per_word.valu

es()), 5000, facecolor = 'g') 

    plt.plot(nums) 

    plt.xlabel( ​'Lexicon values' ​) 
    plt.ylabel( ​'IG Score' ​) 

plt.title( ​'IG Score per lexicon     

lemma' ​) 
    plt.grid( ​True ​) 
    plt.show() 

    ​print​ ​"..Done" 
    ​# del s 
  

    ​return​ s, score_per_word 
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10.2 FrailSafe demo video 
This image is also in Annex 9.5 of ​D4.9​ as both reports are responsible for this demo. 
File: frailsafe-showcase.wmv (frailsafe-showcase.jpeg) 
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