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EXECUTIVE SUMMARY 
 

The aim of work package WP4 is to develop methods for the offline and online 
management, fusion and analysis of multimodal and advanced technology data from 
social, behavioral, cognitive and physical activities of frailty older people and apply 
them to manage and analyze new data. Results from the analysis of existing and new 
data will be also used to create user-profiling virtual models of elderly patients. 
Towards this direction, the task T4.6 aims to examine methods of fusing information to 
extract frailty related indicators. These methods need to manage uncertainty in the 
system generated by incompleteness and noise of wearable sensor data. 

In this deliverable, our primary efforts were focused on identifying approaches for 
discovering a set of relevant and informative indicators for frailty. During this process, 
the state of the art was first analyzed and the clinical experts of our consortium gave 
their valuable input. Then, the multidimensional data analysis problem was formulated 
using tensors as a tensor decomposition problem and several techniques were 
outlined. Moreover, preliminary work was performed on data mining techniques 
towards discovering associations between frailty, and physiological or behavioral 
patterns. These techniques aim to discover multi-level association rules, in a distributed 
environment, from multiple heterogeneous data sources. Finally fueled by previous 
work on data fusion, three schemes were explored: (i) Early Integration scheme, (ii) 
Late Integration scheme with local (sensor dependent) training models, (iii) Late 
Integration scheme with global (sensor independent) training model. This first version 
of the deliverable whose final version is due on M24 sets the ground for the data 
analysis techniques that will be used to discover new frailty metrics. 
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1  INTRODUCTION 

One of the key objectives of the FrailSafe project is the better understanding of frailty 
and the development of new quantitative and qualitative measures to define it. Towards 
this direction, the current state of the art of frailty definition was analyzed in order to 
discover the strengths and limitations of each method. In Chapter 2 a summary of this 
work is presented, and a special attention is given to the electronic Frailty Index which 
can be generated automatically by health record data. During this process, the clinical 
experts of our consortium gave their valuable input. 

In Chapter 3 we present some preliminary work on signal processing and data mining 
techniques. This work is focused so far in two directions. First is the modelling of the 
multimodal data that are being collected in FrailSafe, using tensors. By doing so, we 
can use their strong mathematical background and achieve several advantages such 
as data compression, identification of clusters and exploitation of patterns. The second 
direction aims to discover a novel way of mining multi-level association rules, in a 
distributed environment, from multiple heterogeneous data sources. The general 
architecture model and the future work on this are presented in Section 3.2 . 

Finally in Chapter 4 our preliminary work in designing data fusion schemes is 
presented.  Several different approaches for fusing data from different sensor 
units/dimensions are being explored, resulting in three proposed schemes: (i) Early 
Integration scheme, (ii) Late Integration scheme with local (sensor dependent) training 
models, (iii) Late Integration scheme with global (sensor independent) training model. 
These schemes will be tested and validated in the following period with the FrailSafe 
sensor data. 
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2  FRAILTY INDICATORS 

2.1  Frailty phenotype and Frailty Index 
The frailty syndrome has been widely discussed among the scientific community and 
its foundations are generally well established in the literature. However its practical 
interpretation, particularly in the ordinary clinical practice, remains questionable [1]. The 
combination of frailty measures in clinical practice is essential for the mediations and 
interventions design against age-related conditions (such as disability) in older people 
[2]. Several methods have been developed lately in an effort to address this geriatric 
multidimensional syndrome. 

The authors in [3], focused initially at some basic clinical manifestations of frailty, which 
were then projected into the frailty phenotype as it was described in the Cardiovascular 
Health Study [4]. Along these lines, Rockwood et al. [5] utilized the Canadian Study of 
Health and Aging to create and approve their proposed Frailty Index. Additional 
methods to quantify frailty have been proposed over the last years, mainly expanding 
on these two models [6] [7] [8]. Indeed, the frailty phenotype and the Frailty Index are 
considered by the scientific community as the cornerstone of frailty definition. These 
two methods follow a different approach, and thus should be considered 
complementary [9]. Their main characteristics are summarized in Table 1. 

 

Frailty phenotype Frailty Index 

Signs, symptoms Diseases, activities of daily living, results 
of a clinical evaluation 

Possible before a clinical assessment Doable only after a comprehensive 
clinical assessment 

Categorical variable Continuous variable 

Pre-defined set of criteria Unspecified set of criteria 

Frailty as a pre-disability syndrome Frailty as an accumulation of deficits 

Meaningful results potentially restricted 
to non-disabled older persons 

Meaningful results in every individual, 
independently of functional status or age 

Table 1: Main characteristics of the frailty phenotype and the Frailty Index 

 

The frailty phenotype uses five distinct criteria that assess the appearance of signs or 
manifestations related to frailty (involuntary weight loss, slow walking speed, poor 
handgrip quality, reported exhaustion and mobility issues) [4]. The quantity of criteria 
being met by the subject leads to a 6-level ordinal variable extending from 0 to 5. This 
is then sorted into a 3-level variable portraying a fit older person (none of the criteria), a 
pre-frail person (meets one or two criteria) and a frail person (meets at least three 
criteria). The frailty phenotype can be performed at the first meeting with the subject 
and does not require an in depth clinical assessment. In this way, it serves as a general 
categorization of the population into three distinct profiles. Overall, the frailty phenotype 
does not give any specific guidelines about preventive or helpful mediations or 
interventions. The problem is that it is composed of extremely broad signs or side 
effects, which are only able to raise an alert about a potential health issue. This is not 
enough though to design a quick preventive or restorative intervention due to the fact 
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that there is no information about the underlying cause of frailty. For instance, it is 
clinically impossible to treat sudden weight loss or slow gait speed without knowing the 
basic causal conditions. This is only possible by a thorough geriatric clinical 
assessment, in which the overall health status of the older person is being assessed 
through a multidimensional, interdisciplinary analytic process leading to particular 
clinical interventions. 

The Frailty Index is made by a long list of clinical conditions, disorders, and diseases. 
There are more than 70 parameters as an initial screening tool that must be addressed. 
The actual goal of this list is to address and bring to the surface more critical 
deficiencies that have accumulated over years. Although the Frailty Index has many 
times been revised and updated, the end goal remains to be able to clearly reflect on 
dichotomous conditions (e.g. robustness versus frailty). It is clear that the Frailty Index 
is impractical and inapplicable as a first contact tool for frailty diagnosis, since an 
extensive geriatric assessment of the older person must be conducted at the same 
time. Once the full assessment is complete, the Frailty Index can be used as a tool for 
monitoring the continuous follow up of the older person. Actually, the Frailty Index is 
more sensitive to changes than the overall frailty phenotype. Consequently, the Frailty 
Index might be of more use to help the clinician determine the effectiveness of any 
intervention that was designed and to depict the health status progress of the individual 
over time. In any case, the clinical intervention dependably goes through the Frailty 
Index’s categorization into classes of frailty, separating normal ageing from anomaly. 
The categorization into risk groups of the frailty phenotype makes it more powerful as a 
tool that will link a typical clinical condition to frailty. In a clinical world that is constantly 
dominated by new advancements and developments, it can be of great value to 
formulate a complete geriatric assessment tool that can be generated by an electronic 
health record and serve as a reference for following assessments. 

To sum up, it can't be overlooked that there are two noteworthy theoretical contrasts at 
the heart of the two frailty assessment tools: 

(1) Relationship amongst frailty and age-related grouped conditions. As said, the 
frailty phenotype depends on the assessment of signs and clinical 
manifestations. This implies, as indicated by Fried et al. [4] [10] that frailty may 
hypothetically exist even without medically characterized conditions. Under 
such viewpoint, the frailty phenotype for sure portrays a novel age-related field 
of research for medical sciences [11]. Then again, the Frailty Index revolves to 
a great extent around medical grouped conditions. It depicts a likeliness profile 
that is close to the one assessed by the clinician, which is possibly capable to 
characterize the phenotype frailty and to link it to its early signs as a preventive 
tool. 
 

(2) Relationship of frailty with disability. In their review assessing the phenotype, 
Fried et al. [4] suggests that frailty causes disability that may not be linked to 
(sub)clinical disorders. They clarify that 'the syndrome of frailty may be a 
physiologic precursor and etiologic factor in disability'. This implies a verifiable 
identification of frailty as a key element for the design and conduction of 
interventions against episodes that may result in disability. Along these lines, 
the frailty phenotype finds its optimal application in non-disabled more 
independent subjects. Then again, the Frailty Index incorporates measures of 
everyday incapacity (e.g. issues with getting dressed, issues with washing and 
reduced versatility) in its calculation [5]. At the end of the day, the Frailty Index 
does not make a clear distinction between frailty and disability. It is more 
focused at impartially evaluating the measure of accumulated deficits of each 
individual, whichever they are. 
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These conceptual differences between the two instruments obviously and consequently 
differentiate the target populations to which they might be applied. As mentioned 
individual, while we may meaningfully estimate the Frailty Index in every the frailty 
phenotype may lose some of its clinical relevance when assessed in older persons 
already experiencing disability. 

To summarize, the frailty phenotype categorically defines the presence/absence of a 
condition of risk for subsequent events (most specifically, disability). By differentiating a 
normal (i.e. robustness) versus an abnormal (i.e. frailty) status, the frailty phenotype 
may facilitate the implementation of the frailty concept into clinical practice. It provides 
the clinical-friendly dichotomous variable on which deciding the possible need of 
adapted care and/or interventions. Differently, the Frailty Index acts as measure of the 
organism capacity to accumulate deficits. It tells us how many clinical conditions are 
present and concur at exhausting reserves. Thus, the Frailty Index seems to act as an 
objective marker of deficits accumulation. 

 

2.2  Electronic Frailty Index (eFI) 
Recently there has been some research efforts on developing an electronic frailty index 
(eFI) that can be automatically populated from routinely collected data contained within 
the primary care EHR. In the work of [12] a study was performed using anonymized 
primary care electronic health record data contained in massive databases 
(ResearchOne, The Health Improvement  network (THIN)). The eligible patients were 
aged 65–95 years and had permanently registered at the practice. Using a scoring 
system, the patients were categorized into four categories of frailty: 

1. Fit (eFI score 0 - 0.12) – People who have no or few long-term conditions that 
are usually well controlled. This group would mainly be independent in day to 
day living activities. 

2. Mild frailty (eFI score 0.13 – 0.24) – People who are slowing up in older age 
and may need help with personal activities of daily living such as finances, 
shopping, transportation. 

3. Moderate Frailty (eFI score 0.25 – 0.36) – People who have difficulties with 
outdoor activities and may have mobility problems or require help with activities 
such as washing and dressing. 

4. Severe Frailty (eFI score > 0.36) – People who are often dependent for 
personal cares and have a range of long-term conditions/multimorbidity. Some 
of this group may be medically 

The deficits that were identified by the authors and were used to generate the eFI 
score are listed in Table 2. These deficits are not homogeneous, as some refer to 
symptoms (i.e. dizziness, memory/cognitive problems), some are connected to 
disability (hearing/visual impairment) and some state the appearance of a disease 
(osteoporosis, Parkinson). Moreover there is significant overlap among them. For 
example, Fragility fracture and Osteoporosis are thwo different things, but quite similar 
in many cases. A more graphical way to organize the deficits is depicted in Figure 1. 
 

Activity limitation Memory and cognitive problems 
Anemia and hematinic deficiency Mobility and transfer problems 
Arthritis Osteoporosis 
Atrial fibrillation Parkinsonism and tremor 
Cerebrovascular disease Peptic ulcer 
Chronic kidney disease Peripheral vascular disease 
Diabetes Polypharmacy 



H2020-PHC–690140 – FRAILSAFE  D4.14: Signal processing algorithms for extraction of frailty related indicators (vers.a) 

- 11 - 

Dizziness Requirement for care 
Dyspnea Respiratory disease 
Falls Skin ulcer 
Foot problems Sleep disturbance 
Fragility fracture Social vulnerability 
Hearing impairment Thyroid disease 
Heart failure Urinary incontinence 
Heart valve disease Urinary system disease 
Housebound Visual impairment 
Hypertension Weight loss and anorexia 
Hypotension/syncope  
Ischemic heart disease  

Table 2: List of the 36 deficits used in the eFI 

 

 
Figure 1: Map of the 36 deficits used in the eFI 

 

The eFI has robust predictive validity and good discrimination for nursing home 
admission, hospitalization and mortality. These outcomes are of particular importance 
for older people and health and social care systems internationally, and the predictive 
validity and discrimination characteristics of the eFI across all three outcomes adds 
considerable weight to the clinical utility of the tool in terms of individual and population 
health planning. 
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2.3  Definition of Frailty Indices in FrailSafe 

The clinical partners of the consortium analyzed the state of the art of frailty definitions 
as part of deliverable D2.1, and defined new frailty indices which are going to be used 
in FrailSafe. These indices aim to define the loss of reserve, independently of frailty 
status as this is defined by Fried’s criteria, in order to render clinical results 
measurable. 

On the other hand, FrailSafe Database contains variables at different time points from  

§  Clinical Evaluation 

§  Follow up assessment  

§  FrailSafe system metrics 

In this scope, a new combined index (Combined Frailty index: CoFI), that will express 
frailty status relevant to the study’s measurements, will be created by adding up two 
other frailty indices derived from the study, the Clinical Frailty Index (ClFI), 
corresponding to the results of the clinical evaluation, and the Technical Frailty Index 
(TFI), corresponding to the metrics derived from the FrailSafe system devices.  

Each time a programmed clinical evaluation is effectuated, a ClFI score will be 
calculated, which will be composed by several items that correspond to various aspects 
of frailty, as they are described by the clinical evaluation sub-questionnaires. Similarly, 
a TFI will be calculated for each FrailSafe system installation, practically, for each 
FrailSafe home visit. Finally, a combined FI, by adding up ClFI and TFI will be 
calculated. A summary of these indices in shown in Table 3 and more can be found in 
deliverable D2.1. 
 

Table 3: Frailty Indices definition 

ClFI (Clinical Frailty Index): score corresponding to the findings of the clinical 
evaluation in a time-spot 

TFI  (Technical Frailty Index ): accumulated score derived from the FrailSafe 
system metrics during certain time intervals of observation 

CoFI (Combined Frailty Index): combined Clinical and Technical frailty score 

 

Additionally we plan to link and associate FrailSafe parameters to the eFI parameters 
at a higher level of abstraction at this stage so that we will be able to evaluate our 
population using their scoring system. This will help us exploit the results of the eFI 
which were based on 900k+ health records and validated in large international studies. 
This way, we will be able to strengthen the statistic viability of our study, whilst at the 
same time being able to assess the added value of the FrailSafe system to our 
participants. The fusion of information from the huge in participant numbers eFI 
database to the very specialized, qualitative and highly personalized FrailSafe system 
will undoubtedly yield results of great significance as to the establishment of 
informative indicators and biomarkers for frailty. 
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3  SIGNAL PROCESSING AND DATA MINING TECHNIQUES FOR 
EXTRACTING FRAILTY RELATED INDICATORS 

3.1  Analysis using tensors 
The traditional approach to data representation utilizes a matrix structure, with 
observations in the rows and features in the columns. Although this model is 
appropriate for many datasets, it is not always a natural representation because it 
assumes the existence of a single target variable and lacks a means of modeling 
dependencies between other features. Additionally, such a structure assumes that 
observed variables are scalar quantities by definition. This assumption may not be valid 
in certain domains where higher-order features predominate, or in domains which have 
strong spatial, temporal or spatiotemporal components (e.g. ECG signals). 

Traditionally, these problems have been solved by reducing the features to scalars and 
fitting the dataset to a matrix structure. However, as well as potentially losing 
information, this strategy also employs a questionable approach from a philosophical 
standpoint: attempting to fit the data to an imprecise model rather than attempting to 
accurately model the existing structure of the data. Finally, while it may be possible to 
model dependencies between features by repeating the methodology multiple times, 
each with a different target variable, this yields suboptimal performance and may not 
be computationally feasible when real-time performance is required or when the 
dataset is very large. 

To address these issues, we propose to model such datasets using tensors, which are 
generalizations of matrices corresponding to multidimensional arrays. To formulate the 
use of tensors, we first need to establish some basic notation. The order of a tensor is 
the number of its dimensions. So a 3rd order tensor is a three-dimensional array, like 
the one shown in Figure 2. 

 

 
Figure 2: Third order tensor (source [13]). 

 

Now if someone is dealing with N dimensions, the corresponding tensor will be an Nth 
order tensor. It is very common that tensors are treated either as sets of fibers or as 
sets of slices. A fiber is the higher order analogue of matrix row and column and it is 
defined by fixing all but one indices of a tensor. A slice is a two dimensional part of a 
tensor and it is defined by fixing all but two indices of a tensor. Figure 3 depicts shows 
all possible slices and fibers of a 3rd order tensor. 
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Figure 3: Slices and fibers of a third order tensor (source [13]). 

 

3.1.1  Tensor decomposition 

Having defined the structure of a tensor, one must go further to examine the value of 
representing their data with a tensor. This is where tensor decompositions enter to 
manipulate even the most pretentious sets of datasets with high dimensionality. Tensor 
decompositions, which are an extend of matrix decompositions coming from linear 
algebra, have a wide range of application including data mining, information retrieval, 
neuroscience, signal processing and many other problems. Their success lies on their 
ability to capture multi-linear and multi-aspect structures of high-dimensional datasets. 
The two most widely used tensor decomposition models are PARAFAC and Tucker. 
PARAFAC, as well as Tucker decomposition are the higher dimensional analogous of 
the widely known methods Principal Component Analysis (PCA) and Singular Value 
Decomposition (SVD). 

Singular value decomposition (SVD) is a unique matrix factorization by which a 𝑚×𝑛 
matrix is decomposed into two projection matrices and a core matrix, as follows: 

 

𝐀 = 𝐔×𝚺×𝐕𝐓 
 

where 𝐀 is an 𝑚×𝑛 matrix, 𝐔 is an 𝑚×𝑟 column-orthonormal projection matrix, 𝐕 is an 
𝑛×𝑟 column-orthonormal projection matrix, and 𝚺 is a diagonal 𝑟×𝑟 core matrix, where 
𝑟 is the rank of the projection. 

Singular value decomposition has a wide variety of applications: for example, 
truncation of the SVD coefficients provides an optimal low-rank approximation (i.e. 
minimizes the Frobenius norm). This indicates a close relationship between SVD and 
Principal Component Analysis (PCA). SVD is also used to discover the rank of a 
matrix, find the pseudoinverse, and solve least squares minimization problems. 
Additionally, the solution to SVD may be used in an unsupervised summarization 
technique known as Latent Semantic Analysis (LSA) [14]. In this technique, 𝐀 is treated 
as a term-document matrix. Here, singular value decomposition automatically derives a 
user-specified number of latent concepts from the given terms which form a basis for 
the rows and columns of the matrix. The projection matrices 𝐔 and 𝐕 then contain term-
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to-concept and document-to-concept similarities, respectively. Thus, SVD can be used 
to provide simple yet powerful automatic data summarization. This technique may be 
naturally viewed as a form of co-clustering, in which the rows and columns of a matrix 
cluster to the same space. An alternative graphical interpretation exists, in which 
clusters represent shared “waypoints” through which edges pass between vertices. 
Use of the eigendecomposition or SVD is also common in a graphical context, where it 
is known as spectral graph theory; here a common technique is to cluster on the 
eigenvector corresponding to the second smallest eigenvalue of the Laplacian matrix, 
thereby partitioning vertices along edges which are likely to be minimal cuts. This 
technique is known as Fiedler retrieval. It is also possible to project new query vectors 
into the space defined by the SVD, known as folding in; this enables recommendation 
as the query projects to the same space as both the rows and columns and can be 
assessed using a distance metric. 

The natural extension of singular value decomposition to tensors is known as high-
order singular value decomposition, or HOSVD. This decomposition, in turn, is a 
special case of the Tucker decomposition, which is capable of concurrent data co-
clustering across every mode of a tensor. Formally, let 𝑋 be a tensor of order R; i.e. 
𝑋 ∈ ℜ!!×!!×…×!! . We may then define the Tucker decomposition as the following 
factorization into a core tensor and a product of r projection matrices: 

 

𝑋 = 𝒢×𝐔!×𝐔!×…×𝐔! 

 

The matrices of the decomposition are known as factor matrices and can be thought of 
as the principal components in each dimension (just like in the case of PCA). The core 
tensor’s entries show the level of interaction between the components. Depending on 
the number of columns of each factor matrix, the Tucker decomposition can be a 
compressed version of the original tensor 𝑋. A schematic representation for a 3rd order 
tensor is shown in Figure . 

 
Figure 4: Tucker decomposition of a third order tensor (source [13]). 

 

 

Note that while either the core tensor must be diagonal or the projection matrices must 
be column-orthonormal, the Tucker decomposition does not guarantee that both 
conditions are simultaneously true. When the projection matrices are unitary, the 
factorization is called high-order singular value decomposition. 

When used as a data summarization technique, the Tucker decomposition exhibits 
similar behavior to singular value decomposition. Specifically, the core tensor’s 
elements represent the strengths of the discovered concepts (in terms of variance 
captured), while the projection matrices each represent the strength of the individual 
term-to-concept relationships on their corresponding modes. 
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Another method that has been popular in the field of tensor analysis is the one called 
both parallel factor analysis (PARAFAC) and canonical decomposition (CANDECOMP) 
due to simultaneous discovery of the method in 1970 by Harshman [15] and Carrol and 
Chang [16]. We will refer here to the method as PARAFAC. 

PARAFAC [15] is a generalization of PCA and forms the basis of our tensor analysis 
approach. Given a user-specified number of concepts c, PARAFAC decomposes an 
order-r tensor 𝑋 into a columnwise sum of the tensor product of 𝑟 projection matrices, 
denoted 𝐔(!)…𝐔(!). Formally, we define the decomposition as follows: 

 

𝒜 = λ!𝐔:,!
(!)⊗ 𝐔:,!

(!)⊗ …⊗ 𝐔:,!
!

!

!!!

 

 

PARAFAC decomposition factorizes a tensor into a sum of rank-one tensors. A rank-
one tensor is a3rd order tensor 𝑋 that can be written as the outer product of 3 vectors. 
To that end, a PARAFAC decomposition of a 3rd order tensor can be schematically 
represented as shown in Figure 5. 

 
Figure 5: PARAFAC decomposition of a third order tensor (source [13]). 

 

It can easily be seen that the PARAFAC decomposition is defined by using the fibers 
representation of a tensor. Applications of the aforementioned decomposition on data 
mining problems in the first place included discussion detanglement in online chat 
rooms [17] and automatic conversation detection in e-mail over time [18]. Applications 
on neuroscience have proven that PARAFAC successfully focuses on features of 
interest when it comes to analyze functional connectivity in the brain, revealing crucial 
information about changes in correlation strength between different locations 
(electrodes). 

Just like in the PARAFAC case, Tucker decomposition has been used in the field of 
data mining for the problem of discussion detanglement in online chat rooms, as well 
as identifying handwritten digits, analyzing web site click-through data and several 
other applications. 

A wide range of algorithms has been explored for the implementation of the 
aforementioned tensor decomposition models. The basic idea of most of them include 
using either the Alternating Least Square (ALS) [19] method or the Higher Order SVD 
method (HOSVD). During the past years many variations of these algorithms have 
been implemented, all of them aiming at reducing computational time and minimizing 
the size of the resources needed to compute the decomposition. Of course, the tradeoff 
between computational time/space and accuracy is a bit of a challenge, but that is 
always the case when dealing with large datasets. 



H2020-PHC–690140 – FRAILSAFE  D4.14: Signal processing algorithms for extraction of frailty related indicators (vers.a) 

- 17 - 

Moving a step beyond the original use of the tensor decompositions, there has been a 
great effort to exploit the tensors’ structure and tools considering several data mining 
problems including clustering, feature extraction and classification. A feature extraction 
and classification problem from a tensor decomposition point of view can be defined as 
follows: 

Consider a set of K training samples (a set of arrays formulated as slices within a 
tensor) corresponding to C classes and a set of test data (test slices of a tensor). The 
challenge is to find appropriate labels for the test data. The latter can be performed in 
the following steps: 

• Find a set of basis matrices (just like in the Tucker model) and corresponding 
features for the training data. 

• Perform feature extraction for test samples using the basis factors from the 
previous step. 

• Perform classification by comparing the test features with the training features. 

One can easily understand that the above problem is an extension of the Tucker 
decomposition model, considering the factor matrices as the basis matrices, and the 
core tensor as the feature representation. The compressed core tensor is of much 
lower dimension than the original data, making it a fruitful option for dealing with the 
classification problem using as little resources and time as possible. The above method 
was proposed by Phan and Cichocki in [20] and was tested for handwritten digits, BCI 
motor imagery and image classification. A simplified scheme is shown below. 

 

 
Figure 4: Classification diagram based on TUCKER decomposition (source [20]). 

 

Another interesting approach on the co-clustering problem was introduced in the work 
of [21], where the idea was to use PARAFAC decomposition with sparse latent factors 
in order to extract tri-clusters from the original data. The uniqueness of the 
decomposition along with the sparsity constraint impose that a large number of 
possibly overlapping co-clusters will arise. 

From the methods and applications mentioned above, it is clear that tensors and their 
decompositions are a precious tool for a wide range of fields, and provide the 
opportunity to extract hidden information of high dimensional datasets using state-of-
the-art algorithms applicable to most common systems. The data analysis procedure 
requires a great amount of effort to be accomplished, and heading towards the right 
tools is the key to a successful result. 
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3.1.2  Applying tensors to FrailSafe data 

Considering the multimodal nature of the data collected through the FrailSafe system 
development, the analysis should be headed towards representing sensory, 
physiological and device-related data with tensors. More specifically, each data source 
can be thought of as a dimension (a mode) in an N-dimensional tensor (where N is the 
number of the different kind of data sources). For each different sample of the data 
collected (a sample can be a set of data coming from a specific time course), there is a 
distinct tensor created, which in fact belongs to a set of K training tensors as mentioned 
above in the feature extraction & classification example. For each of these samples we 
suppose that the knowledge about the frailty condition exists (aka the class to which a 
training tensor belongs to). Performing a Tucker decomposition for the whole set of Κ 
tensors will conclude to having a set of features for each sample, living in the core 
tensor of each decomposition. The latter simplified representation is computationally 
expensive, and for that reason all sample tensors can be concatenated into a single 
tensor preferably vectorized, whose core tensor will include all features from all 
samples. The vectorized core tensor will include all possible features.  

Up until that point, it is hopefully clear that even though the size of the data volume is 
important, manipulating the data as vectors guarantees that the data analysis at least 
offline is viable.  Moving further the analysis, after extracting the features from the 
tensor training set classification should be performed. The choice of the classifier must 
be done after experimenting with the input data and features extracted. Hopefully 
feature ranking and feature selection will conclude to a stable set of features, which will 
account for the frailty indicator. A tensor test set of will be given as input to the 
classifier in order for each sample to be assigned to a frailty-dependent class.  

As shown above, the use of tensor representation and tensor decompositions for the 
data provided during the FrailSafe system development, is highly recommended for the 
purpose of frailty indicator extraction. The computational cost of the analysis is low, 
making it an attractive solution for a wide range of data analysis problems, including 
FrailSafe. 

Looking at the analysis procedure from a different perspective, data fusion of multiple-
source data can be formulated as a coupled matrix and tensor factorization (CMTF) 
problem. Coupled factorization techniques arose from the need to jointly analyze 
heterogeneous datasets, meaning datasets with different order, in the form of matrices 
or higher-order tensors. The formulation of factorizing a 3rd order tensor 𝑋 ∈
 ℝ!×!×!coupled with a matrix 𝑌 ∈  ℝ!×! is the following 

 

𝑓 𝐴,𝐵,𝐶,𝑉 =  𝑋 − 𝐴,𝐵,𝐶 ! +  𝑌 − 𝐴𝑉! !  , 

 

where the factorization of 𝑋 and 𝑌 is performed through the minimization of the above 
equation which fits a CANDECOMP/PARAFAC (CP) model to 𝑋 and factorizes 𝑌 so 
that the factor matrix corresponding the common mode i.e. 𝐴 ∈  ℝ!×!  is the same. 
Factor matrices 𝐵 ∈  ℝ!×! and 𝐶 ∈  ℝ!×! correspond to the second and third modes of 
the tensor. 𝑉 ∈  ℝ!×!  is the factor matrix that corresponds to the second mode of 𝑌. 
The above formulation is ideal for revealing underlying structures in joint datasets when 
all factors are shared across datasets. But it fails to capture factors only in the 
presence of both shared and unshared components. To overcome this issue, the 
problem is reformulated as 

 

𝑓 𝜆,𝛴,𝐴,𝐵,𝐶,𝑉 =  𝑋 − 𝜆;𝐴,𝐵,𝐶 ! +  𝑌 − 𝐴𝛴𝑉! ! + 𝛾 𝜆 ! + 𝛾 𝜎 !  , 
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where the columns of factor matrices have unit norm and 𝝀 ∈  ℝ!×! and 𝝈 ∈  ℝ!×! are 
the weights of rank-1 components in the third-order tensor and the matrix respectively. 
𝜮 ∈  ℝ!×! is a diagonal matrix with entries of 𝝈 in the diagonal. Finally, 𝛾>0 is a penalty 
parameter. Adding the constraints of weighting and penalty parameters, unshared 
components will have weights equal or close to zero in one of the datasets. The latter 
approach can be further explored in [22], [23], [24]. A schematic representation of the 
reformulated problem is shown below. 

 
Figure 5: Constrained CMTF model (source [24]). 

 

Experimenting with a variety of optimization algorithms, a solution to the problem of 
structure-revealing CMTF model can be found in order to assess robust results through 
the joint analysis of complementary sources. Especially in the case of FrailSafe where 
sensory data can be represented as a high-dimensional tensor while a matrix can 
contain location-related (or physiological) data, fusion through a coupled matrix and 
tensor factorization scheme could yield extraordinarily satisfying results. Tensor-based 
aided methods such as the one mentioned above for the purpose of knowledge 
discovery through multiple-sources datasets are considered a great option in the 
context of FrailSafe system development. Properly extracted underlying structures 
through the joint analysis can bring into light hidden frailty-related components, which 
in turn will be given as an input to the Virtual Patient Model as well as the monitoring 
system of FrailSafe. Picking robust methods in order to set up a valuable human-
oriented system is the cornerstone of our success.  

 

3.2  Mining of multi-level association rules  
Towards discovering associations between frailty, and physiological or behavioral 
patterns, a preliminary work has been made in association rules. The aim is to discover 
a novel way of mining multi-level association rules, in a distributed environment, from 
multiple heterogeneous data sources.  

Nowadays, as a result of cheap storage and data availability, the volume of data is 
huge and is expanding rapidly and very often there is the need to discover useful and 
interesting knowledge from quite different data sources. While methodologies and 
solutions exist to mine rules effectively in a single node environment, these 
methodologies fail when data volume expands beyond a threshold. On the other hand, 
distributed systems and platforms have appeared to present an alternative processing 
model, capable of handling effectively massive loads of data. Despite their immense 
capabilities, these systems lack established methodologies in order to fully exploit their 
resources.  

Our goal is to take the positive features from both models and combine them into a 
unified model, capable of handling massive data volume and performing established 
knowledge discovery methodologies (association rule mining) on them. Our focus is 
twofold:  
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• Combination of association rules and concept hierarchies to be able to mine 
multi-level rules from unified and augmented data sources 

• Exploitation of the processing power and capabilities of distributed systems to 
effectively handle the increased data volume 

To accomplish our objective, we augment input data, based on concept hierarchies 
(which are adjusted on the problem at hand), to produce a unified and augmented data 
file. This file is sent to a distributed processing system (Hadoop framework stack) to 
generate large frequent itemsets effectively, based on the procedure proposed by the 
Apriori algorithm. Multi-level association rules are then produced from these itemsets 
and pruned based on optimization parameters, in order to keep only those that are 
interesting. 

 

3.2.1  Architectural Model 
The model that is being developed is based on a multi-tier architecture. The different 
tiers are presented in Figure 6, where Configuration tier is marked in blue, Processing 
tier is marked in green, Output tier is marked in red and finally Control tier is marked in 
yellow. The packages out of which the tiers are consisted, are explained below. 

1. Configuration and input: This package is responsible for every 
configuration that is needed at the system setup phase. System variables, 
hierarchy files, input and output folders, ssh connections as well as checking 
access rights for files and folders, where needed. Additionally, tests on the 
structure and format of input files (data files, hierarchy files, configuration 
file) are carried out, in order to ensure a smooth system initialization. By 
design, direct user input for system variables and hierarchies will be 
available, along with automated importing from xml files. 

2. Data augmentation: Data augmentation is used to implement the idea of 
multi-level concept hierarchies. This procedure is performed on all input 
files, based on the hierarchy files provided at the configuration stage, in 
order to unify all data entries into a single augmented file. Information for the 
hierarchy structure is stored along with the actual data (that are considered 
to be at leaf level), following a bottom up approach. 

3. Distributed processing: The distributed system that will be used is the 
Hadoop framework and its software stack. Hadoop provides many tools for 
distributed processing (Mahout, MapReduce, Spark), but they require 
coordination during the intermediate phases and the many and time 
consuming iterations of the Apriori large frequent itemset generation 
procedure. Moreover, the actual communication, as well as input and 
output, with the Hadoop environment has specific issues that must be 
considered, especially in the case of remote ssh-based communication. 

4. Rule generation and pruning:  Large frequent itemset generation is the 
most costly part of the Apriori algorithm, after which the rule production 
follows. Rules are based on the generated itemsets and are associated with 
several metrics and thresholds, in order to estimate their value. The degree 
of interestingness determines whether a rule will be pruned or not. The 
various thresholds are determined during the configuration phase and metric 
values are exported along with the rules. 

5. Output: All the interesting rules that have remained, along with their 
metrics, are stored into a report (in xml format) and the report is exported as 
system output. 

6. Control: The coordination between the various stages and phases of our 
model is done by this package. Due to the differences in input and output 
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data structure and of course features, there must be interfaces between the 
modules, in order to ensure their efficient operation. 

The flow diagram of the overall system is summarized in Figure 7. 

 
Figure 6: Multi-tier model 
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Figure 7: System control flow diagram 

 

3.2.2  Current and future work 
 
As a preliminary work, the state of the art in multi-level association rule methods has 
been explored. Several recent works ( [25], [26], [27]) are studying the creation and the 
organization of a multi-level concept hierarchy, along with the data augmentation 
procedure. The implementation of association mining algorithms such as the Apriori in 
distributed architectures has been in ( [28], [29], [30]). Motivated by the related work, 
the basic architecture and packet layout have been designed and the source codes for 
a number of functions (retrieving hierarchy data and creating the corresponding xml 
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files, reading hierarchy data from xml files, creation and reading of the xml 
configuration file) have been developed in java. Furthermore existing algorithms in 
Mahout, from the Hadoop framework stack, are examined in order to generate the 
frequent itemsets. As a secondary choice, an Apriori implementation based on the 
main map-reduce Hadoop framework stack could be used. The proposed model is 
going to be tested using FrailSafe’s multimodal data: 

• Questionnaire data 
• Data collected from the mobile phone 
• Data collected from the vest 
• Data study and preprocessing are required to determine which attributes will be 

used and how 
 
In the following period our efforts will be focused on developing, implementing and 
testing our model. The next steps can be summarized as follows:  

• Comprehensive study and analysis of available data and their structure, to 
determine the precise augmentation process 

• Study and testing of the distributed system features and their interaction with 
the rest of the system 

• Completion of the distinct software packages, as regards to their basic 
functionality 

• Implementation of the basic software functionality (for the entire system), in 
order to run tests and configure the system for maximum performance (few 
hierarchies vs many hierarchies, distributed vs non-distributed implementation, 
handling multiple data sources) 

• Creation of complete test cases (after the implementation of the basic system 
functionality), that cover everything from system input (data sources) to system 
output (exported report) 

• Expansion of the basic software features, based on the designed multi-tier 
model, to their full extent 

• System testing, using actual data as input and evaluation of its usability, 
performance and efficiency 

• External user reviews (lab members that are unfamiliar with the system) for 
feedback on the various features 

• Final system evaluation, using the complete data set and comparing the various 
configurations and their results 
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4  DATA FUSION 

There are two main approaches for fusing data from different sensor units/dimensions: 
feature-level fusion and decision-level fusion. In feature-level fusion, which is 
commonly used to exploit the dependencies across dimensions, the data are fused 
directly after feature extraction. Feature vectors from each dimension/sensor unit are 
fused and events are classified by one global classifier. On the other hand, in decision-
level fusion, events are classified for each dimension/sensor unit by its local classifier 
and the results from these local classifiers are later fused in the decision layer. 

 Analysis of multi-sensor data is very complex and difficult to summarize with a small 
number of variables extracted from the multi-dimensional signals. As a result, analysis 
is usually accompanied by extraction of high dimensional feature vectors from data. 
The dimensionality is further increased in feature-level fusion approaches aiming to 
exploit the information across dimensions/sensor units, where already high dimensional 
feature vectors from several sensor units are combined to a single large feature vector. 
The problem of high dimensionality coupled with limited number of samples, usually 
available in practice, makes the analysis of multidimensional signals a challenging task. 

Thus we propose a new decision-level scheme to deal with the problem of high 
dimensionality in conjunction with small number of samples. The proposed scheme 
combines information from all sensor units in order to train a single classification model 
and thus is sensor-independent.  The decision-level fusion scheme keeps the 
dimensionality quite low, while the incorporation of a global training model allows the 
use of more training samples (by combining all sensor units). 

 

 

Figure 8: Feature-level fusion scheme. 

 
Feature Level fusion 
In the feature-level scheme, each one of the available sensor units from each frame is 
processed in parallel by the feature extraction algorithm. The estimated feature vectors 
from each sensor unit are concatenated into a single feature vector. This 'super' feature 
vector is used as a representative signature for the corresponding frame.  Therefore, 
the training set is a data matrix M×N×f, where M is the number of frames in the training 
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set, N is the number of sensor units and f the number of features extracted from each 
sensor unit. The feature level scheme is illustrated in Figure 8. Although such a 
scheme exploits the information from all dimensions of the data, it leads to a feature 
vector of high dimensionality imposing the need either for feature selection before 
classification, or the availability of a large number of training samples.  
 

Decision-level fusion with local training models 
In the decision-level fusion with local (sensor dependent) training models, a separate 
classification model is built for each sensor unit. Each one of the available sensor units 
is processed in parallel by the feature extraction algorithm and the estimated feature 
vectors are used to form N training sets, one for each sensor unit. The data matrix of 
each training set is M×f here.  For each frame, N decisions are made by each one of 
the N local classifiers. A final decision is made by combining the N output class labels 
using a fusion rule, such as majority voting. The decision-level with local training 
models fusion scheme is illustrated in Figure 9. In decision-level fusion schemes the 
dimensionality of the feature vector is smaller than in feature-level fusion schemes. 
However, this scheme uses training samples only of the corresponding sensor unit. 

 

Figure 9: Decision-level with local (sensor dependent) training models fusion scheme. 

 

Decision-level with global training model 
In the decision-level with global (sensor independent) training model fusion scheme, a 
common classification model is used for the feature vectors extracted from the different 
sensor units. The data matrix of the training set is now N×M×f and is constructed by 
merging all training sets from the decision-level with local models fusion scheme. In 
this scheme the number of training samples is larger since each data frame appears in 
the training set N times, one time for each one of the available sensor units. During the 
test phase, for each frame, N decisions are made by feeding the signature from each 
sensor unit to the global classification model. A final decision is made at a score level 
by combining the N output class labels using the same fusion rule (majority voting) as 
before. The decision-level with global training model scheme is illustrated in Figure 10. 
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Although this scheme is less specific, it handles better both the high dimensionality and 
the problem of small number of training instances. 

 

Figure 10: Decision-level with global (sensor independent) training model fusion scheme. 

 

Our preliminary work in data fusion schemes were tested on different datasets and 
showed promising results [31]. In the next period we intend to use the older person 
data collected through FrailSafe, in order to validate our schemes. 
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