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EXECUTIVE SUMMARY 

 

The aim of work package WP4 is to develop methods for the offline and online 
management, fusion and analysis of multimodal and advanced technology data from 
social, behavioural, cognitive and physical activities, and physiological signals of frail 
older people and apply them to manage and analyse new data. Results from the 
analysis of existing and new data will be also used to create user-profiling virtual 
models of older people. 
The main focus of the deliverable D4.17 is to develop a clinical state prediction 
engine that simulates the behaviour of an existing patient model, taking into account 
up-to-date measurements of physiological factors. This is performed by integrating 
the results of the different sensors and self-reports (combination of all the acquired 
data) in order to provide the user with the appropriate feedback. These predictions 
are used either to alarm the patient in order to prevent adverse events, or to be 
included as supplemental input to the Decision Support System module. 
Furthermore, artificial intelligence methods are applied for knowledge discovery 
from data related to user activity and for physiological classification. 
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1 Introduction 
Global population has lengthened its life expectancy tremendously over the last few 
decades. Subsequently, while humans tend to live longer, numerous chronic 
situations like cardiovascular diseases are found more frequently among them than 
in the past. In this hypothesis, it is safe to imagine each individual at its late age as a 
complex patient in need for the consultation of different specialists. Not only do the 
national health systems consume an excessive amount of resources to care for the 
average overaged patient, but also, on the other hand, the quality of life of the latter 
is impoverished. Therefore, prevention appears to be the absolute and crucial 
solution. Frailty, the one-word term for our body’s state of physical and mental 
weakness could be explained by the parallel existence of several factors implicating 
each individual’s health status [1, 2].  

The first part of this deliverable targets the risk assessment platform, which the 
clinicians can use to monitor the older people and intervene accordingly in case of 
risks. For this purpose, a FrailSafe Decision Support System (DSS) engine is designed 
to monitor the older person’s vital signs and forward alerts towards caregivers and 
clinicians. These alerts are generated when irregularities are observed in the VPM 
aggregated data or when a short-term event is detected by the online data analysis 
module. Also, in this part of the deliverable we discuss about the role of 
inflammation as a risk factor for frailty. In the draft deliverable there was an 
extensive review of recent studies which showed a clear association between 
inflammation, frailty, and age-related disease.  

The second part of the deliverable focuses on the development of a clinical state 
prediction engine that aims to simulate the behaviour of an existing patient model, 
taking into account up-to-date measurements of physiological factors. Thus, the 
system is able to integrate the results of the different sensors and self-reports 
(combination of all the acquired data) in order to provide the user with the 
appropriate feedbacks, incentives, and actions. This way several, critical clinical 
parameters are predicted, such as prediction of frailty level change. These 
predictions can be used either to alarm the patient in order to prevent adverse 
outcomes, or to be included as supplemental input to the DSS module. Probabilistic 
techniques are applied on a provided set of parameters to give probabilistic 
prediction of specific indicators. 
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2 Risk assessment 

Towards enhancing the risk assessment domain, the FrailSafe DSS engine is designed 
to monitor the older person’s vital signs and forward alerts towards clinicians. These 
alerts are generated when irregularities are observed in the VPM aggregated data 
(e.g. on heart rate, respiration rate, and blood pressure) or when a short-term event 
is detected by the online data analysis components (e.g. fall or suicidal text 
detection). Thus, the DSS can serve as a risk assessment platform, which the 
clinicians can use to monitor the older people and intervene accordingly in case of 
risks. 

2.1 VPM parameters update 

The VPM parameters table which was composed in M6 for the scope of D4.5, 
captured the desired parameters that FrailSafe project intended to store for each 
participant. Since this table was composed in the beginning of the project, several 
assumptions were made about the recorded parameters from the devices and the 
data analysis results. Thus, a revision in the VPM parameters was needed because: 

• some of the initial parameters are not actually measured during the project 

(e.g. we don’t record the time that the participant spent indoors socializing 

with friends, or the mean heart rate value while the participant is sleeping), 

• other parameters were described abstractly and a clarification was needed 

(e.g. “Personal Medical History”, “Cognitive Questionnaires” or “Short-term 

Alerts”),  

• and other parameters were not described initially but are actually collected in 

the FrailSafe project (e.g. psychological domain data, outdoor spatial mobility 

analysis using the GPS data, specific game data etc.).  

We have divided all the revised VPM parameters into five distinct tables: (i) 
demographic data for participants, (ii) clinical data obtained during the clinical 
evaluations, (iii) data collected by FrailSafe devices, (iv) alerts and events generated 
by the system, and (v) recommendations and interventions (defined in D2.3). These 
tables are presented below: 

 

Demographics 

Source  Technical/Clinical Parameters META Tags 

eCRF 

Participant id 
Gender 
Age 
Contact details (empty for participants of the 
FrailSafe study) 

Type of data 
Source 
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Clinical Data 

Source  Domain Technical/Clinical Parameters META Tags 

eCRF Medical domain (M) 

Number of Comorbidities (M) 
Comorbidity’s impact (M, P, s, ψ) 
Polymedication (M, p, c) 
Hospitalisations (M) 
Orthostatic hypotension (M, p) 
Visual impairment (M, S, p) 
Hearing impairment (m, S, c) 

Type of data 
Source 
Domains 

eCRF 
General Condition 
Domain (M, ψ) 

Unintentional weight loss (self-reported) (M, ψ) 
Self-reported exhaustion (M, ψ) 

Type of data 
Source 
Domains 

eCRF 
Lifestyle domain (P, M, 
ψ, s) 

Smoking (M, ψ, p, s) 
Alcohol (M, Ψ, S) 
Physical Activity (P, M, ψ, s) 

Type of data 
Source 
Domains 

eCRF 
Physical Condition  
(P, m, c) 

Balance (single foot standing) (P, m) 
Gait-related task speed (P, c) 
(Timed Get Up and Go test) 
Gait - speed 4 m (P, m) 
Lower limb strength (P, m) 
Grip strength –dynamometer (P, m) 
Low physical activity (P, M, s, ψ) 

Type of data 
Source 
Domains 

eCRF 
Functional capacity 
domain (P, m, c, ψ) 

Score in ADL and IADL scales 
Autonomy evaluation in activities of daily living 

Type of data 
Source 
Domains 

eCRF Nutrition (M, Ψ, c, s) 

BMI (M, Ψ, p, c, s) 
Body fat (M, Ψ, P, c, s) 
Waist circumference (M, Ψ, P, c, s) 
Lean body mass (M, P, ψ) 
Total MNA score (M, Ψ, p, c, s) 

Type of data 
Source 
Domains 

eCRF 
Cognitive Domain  
(C, ψ, m, s) 

MMSE scores (C, ψ, m) 
MoCA score (C, ψ, m) 
Subjective memory complaint (C, ψ, m, s) 
Natural language analysis (C, Ψ) 

Type of data 
Source 
Domains 

eCRF 
Psychological Domain 
(Ψ, S, c) 

GDS-15 (Ψ, S, c) 
Self-rated anxiety (Ψ, S, c) 
Natural Language Analysis (C, Ψ) 

Type of data 
Source 
Domains 

eCRF Social Domain (S, Ψ, m) 

Living conditions (S, Ψ, p, m) 
Leisure activities (S, Ψ, p, m) 
Membership of a club (S, Ψ, p, m) 
Number of visits and social interactions per week (S, Ψ, p, m) 
Number of telephone calls exchanged per week (S, ψ, m) 
Approximate time spent on phone per week (S, ψ, m) 
Approximate time spent on videoconference per week (S, ψ) 
Number of written messages sent by the participant per week 
(S, ψ, m, p) 

Type of data 
Source 
Domains 

eCRF 
Environmental Domain 
(S, P, m) 

Subjective suitability of the housing environment according to 
participant’s evaluation (S, P, m) 
Subjective suitability of the housing environment according to 
investigator’s evaluation (S, P, m) 
Number of steps to access house (S, P, m) 

Type of data 
Source 
Domains 

eCRF Wellness (Ψ, S, M, P, c) 

Quality of life self-rating (Ψ, S, M, P, c) 
Self-rated health status (M, Ψ) 
Self-assessed change since last year (M, ψ) 
Self-rated anxiety (Ψ, S, M, P, c) 
Self-rated pain (M, P, ψ) 

Type of data 
Source 
Domains 

 

 

FrailSafe device Data 



 

May 2018 -12- 

 

 

 

Source  Technical/Clinical Parameters META Tags 

WWBS 

Min/max/average daily values for: 

• Heart rate 

• Heart rate variability 

• R-R interval in ECG 

• Breathing rate 

• Breathing amplitude 

Type of data 
Source 
Domains 
Location 
Room 
Posture 

WWBS Time spent per day in each posture (Walking, Sit/standing, Stairs, Lying, Transition) 

Type of data 
Source 
Domains 
Location 
Room 
Posture 

FORA blood 
pressure 
monitor 

Average morning/evening values for: 

• Systolic pressure 

• Diastolic pressure 

Type of data 
Source 
Domains 

Mobil-o-graph 

Values for: 

• Pulse Wave Velocity 

• Augmentation Pressure 

• Augmentation Index75 

• Vascular Resistance 

• Cardiac Output 

• Stroke Volume 

• Cardiac Index 

Type of data 
Source 
Domains 

GPS 

Daily values for: 

• total distance 

• total duration 

• total number of steps 

• radius covered 

• area covered 

• average walk speed 

• total walk time 

• total stop time 

• total vehicle time 

• walk time percentage 

• vehicle time percentage 

• stop time percentage 

• track number 

• track average distance 

• track average duration 

• track maximum distance 

• track maximum duration 

Type of data 
Source 
Domains 
Location 

Game 1: Force 
Analyzer 

Daily values for: 

• Max force 

• Average max force 

• Average endurance 

• Max endurance 

• Average game duration 

• Max game duration 

Type of data 
Source 
Domains 
 

Game 2: Red 
Wings 

Daily values for: 

• Max force 

• Average max force 

• Average endurance 

• Max endurance 

• Average score 

• Max score 

• Average game duration 

• Max game duration 

Type of data 
Source 
Domains 
 



 

May 2018 -13- 

 

 

 

Games 3: 
Railway 

Average/max daily values for: 

• Score 

• Distance 

• Chest mobility 

• Arm mobility 

• Movement velocity 

Type of data 
Source 
Domains 
 

Game 4: Simon 

Average/max daily values for: 

• Hits number 

• Fails number 

• Game duration 

• Sequence length 

Type of data 
Source 
Domains 
 

Game 5: 
Memory  

Average/max daily values for: 

• Response time 

• Game duration 

• Hit percentage 

• Fail percentage 

Type of data 
Source 
Domains 
 

Game 6: Reflex 

Average/max daily values for: 

• Reflects time 

• Game duration 

• Hit count 

• Failure count 

Type of data 
Source 
Domains 
 

Game 7: Virtual 
Supermarket 

Average/max daily values for: 

• Game duration 

• Item time 

• Item number ratio 

• Item quantity ratio 

• Not requested item number ratio 

• Not requested item quantity ratio 

• Money ratio 

Type of data 
Source 
Domains 
 

Game 8: Gravity 
Ball 

Daily values for: 

• Best time  

• Gravity deviation 

• Trajectory deviation 

Type of data 
Source 
Domains 
 

Game 9: 
Floating 
Archery Target 

Average/max daily values for: 

• Accuracy 

• Hand response time 

• Head response time 

Type of data 
Source 
Domains 

Game 10: 
Memory AR 

Average/max daily values for: 

• Visual accuracy 

• Visual reflex 

• Memory accuracy 

• Game duration 

• Head trajectory 

Type of data 
Source 
Domains 
 

Beacons Time spent in each room during each day (Kitchen, Bedroom, Living room etc) 

Type of data 
Source 
Domains 
Location 
Room 

 

Events 

Source  Technical/Clinical Parameters META Tags 

Fall detection app 
(smartphone) 

Fall alert 
Type of data 
Source 
Domains 

Social media platform Suicidal manifestation in text 
Type of data 
Source 
Domains 
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WWBS 
Heart Rate while Standing/sitting/Lying not in range 50-100 
Heart Rate while Walking not in range 60-110 
Breathing Rate not in range 12-28 

Type of data 
Source 
Domains 

Blood pressure monitor 
Systolic Blood Pressure while Standing/sitting not in range 100-140 
Diastolic Blood Pressure while Standing/sitting >90 

Type of data 
Source 
Domains 

eCRF 

BMI<18 or >30 (M, Ψ, p, c, s) 
MMSE<24 (C, ψ, m) 
MoCA<26 (C, ψ, m) 
Alcohol consumption >28units/week for men and >21 for women (M, Ψ, S) 
ADL and/or IADL less than optimal (P, m, c, ψ) 
>4 medication taken (M, p, c) 
comorbidities with significant impact >0 (M, P, s, ψ) 

Type of data 
Source 
Domains 

eCRF Any significant change in selected clinical scores should raise an alert 
Type of data 
Source 
Domains 

 

Interventions 

Source  Domain Guideline Recommendation 

eCRF Cognitive domain 
If MMSE score is under 
the normal values 

A visit to the neurologist is recommended for providing a 
more comprehensive evaluation of your cognitive level 

eCRF Cognitive domain 
If MMSE score is 24 (cut-
off point)  

Participation to a cognition enhancement programme is 
encouraged.  

eCRF Cognitive domain 
If MMSE score is 25 and 
above  

To increase your cognitive level in an entertaining way, 
playing FrailSafe’s “Memory”, “Simon” “Supermarket” or 
“Reflex” games frequently is recommended  

eCRF Lifestyle domain If the person is smoking  

• Smoking deteriorates health and weakens the 
immune system. Consider replacing it with 
exercise  

• There are plenty of programs available aiding 
people to quit smoking. Choosing one of 
them is encouraged (maybe add a list per 
country?)  

 

eCRF Lifestyle domain 

If reported low or no 
physical activity or  

if GPS Logger doesn’t 
show a satisfactory 
outdoor walking activity 
(in terms of distance and 
duration) 

• Exercise can not only prevent but reverse 

frailty. Consider joining an aerobics and 

resistance exercise program  

• The following videos provide valuable 

exercises for home workout. Give them a try. 

• Walking for at least 2.5 hours per week can 

increase endurance and benefit your health 

• Play FrailSafe’s “Redwings” game to 
strengthen your grip 

eCRF Lifestyle domain 

If the person is 
consuming an excessive 
amount of alcohol 
(recommendation based 
on unit reported) 

• Alcohol can cause severe damages to the 

liver. Consider lowering consumption. 

• There are groups helping people stop drinking 

alcohol 

• One glass of red wine per day is the only 
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healthy alcohol consumption option 

eCRF, 
FrailSafe 
devices 

Medical domain 
If Blood Pressure is 
consistently high  

• Consider visiting your GP for regulating your 

blood pressure 

eCRF Medical domain 
If more than 3 co-
morbidities 

• Consider medication list review according to 
pre-defined criteria (e.g. STOPP/START) 

• Consider modification of prescribed drugs 

according to the functional status of the 

patient for minimizing possible effects 

resulting to frailty  

eCRF Medical domain 
If presence of 
Orthostatic Hypotension 

• In order to avoid dizziness from orthostatic 
hypotension consider getting up from the 
chair, bed or other sitting posture slowly 

• If dizzy at any point, sit down, lower your 

head towards your legs and breathe slowly 

eCRF 
Psychological 
domain 

If score is greater than 5  

• Consider visiting a neurologist or psychologist 

to discuss about the issues in your life that 

make you sad 

• A smile can always make a day better  

• Meeting with friends is a helpful habit 

• For clinicians: Consider referral of the person 
to a psychiatrist, or neurologist for medical, 
psychological intervention 

eCRF Nutrition If BMI too high 

• Consider a healthy diet for achieving a 

balanced weight. Eat plenty of fruits, 

vegetables and protein 

• Aerobic exercise not only helps cardio 

function but also helps in losing weight 

eCRF Nutrition If BMI too low 

• A visit to the GP for investigating the low BMI 

is recommended 

• An enriched and nutritional diet is 

recommended. Consider visiting a nutritionist 

• Resistance exercise helps in increasing muscle 

mass and it is a perfect way of remaining 

physically healthy. 

eCRF Nutrition If malnourished on MNA 

• Visit a nutritionist 

• Resistance exercise increases muscle mass 

and improves appetite 

• Investigate cause of malnourishment (for 

clinicians) 

• Consider taking nutritional supplements  

eCRF Physical domain 
If balance on single foot 
standing <5 seconds 

• Try to hold on to a stable object and stand on 

single foot for 1 minute. If unsuccessful try it 

as often as possible until you achieve it. When 

it is achieved try slowly removing hands from 

the object. 

eCRF Physical domain Slow gait speed 
• Try walking for 2 minutes every day 

increasing the time as walking becomes easier 
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eCRF Physical domain Low lower limb strength 
• Exercise can help increase limb strength. 

Consider a home workout  

eCRF Physical domain Low grip strength 

• Suggestion for reviewing medication (if 

medications taken might be the cause of low 

grip strength)  

• Resistance exercise is extremely helpful for 

strengthening grip thus reducing one of the 

main symptoms of frailty 

• Playing FrailSafe’s “Red Wings” or “Force 

Analyzer” games two or three times a week 

can help in increasing grip strength 

eCRF Physical domain 
If low muscle mass and 
poly-medication exists 

• Send recommendation to the clinician to 

prescribe medication that increases muscle 

mass 

 

The META tags below are used to describe the data in the DSS API are summarized 
below: 

META tag 
name  

Possible value(s) META tag name  Possible value(s) 

Type of data 

• Devices 

• Clinical 

• Demographics 

• Alerts 

• Interventions 

Posture 

• Sitting/standing 

• Walking 

• Lying 

• Stairs 

• Transition 

Location 
• Indoors 

• Outdoors 
Room 

• Kitchen 

• Bathroom 

• Bedroom 

• Livingroom 

• Warehouse 

• Outdoor 

Domain (main) 

• Medical 

• General 

• Lifestyle 

• Physical 

• Functional 

• Nutrition 

• Social 

• Cognitive 

• Environmental 

• Wellness 

• Psychological 

Tags (reflecting impact 
of each item on each 
of the aspects of 
frailty) 

• Physical/functional: P 

dominant, p recessive  

• Medical: M dominant, m 

recessive 

• Social: S dominant, s 

recessive  

• Cognitive: C dominant, c 

recessive 

• Psychological: Ψ 

dominant, ψ recessive 

 

2.2 Generation of alerts 

The alerts which are stored in the DSS engine are generated by the offline and online 
data analysis modules as shown in Figure 1.  
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Figure 1: Data aggregation and alert generation from offline and online data analysis. 

 

During the offline data processing, data are being collected from multiple sources 
and are subsequently summarized with the use of aggregation functions as 
described in D4.2. Through this procedure the values of the raw and the aggregated 
data are examined, and alerts are generated if these values are outside of the 
normal range, as this was defined by the clinicians. The acceptable ranges for the 
aggregated physiological parameters of older people are presented in Table 1.  

Table 1: Normal ranges of measurements per activity.  

Source Measured Entity Activity Acceptable 
Range 

WWBS Heart Rate Standing/sitting/Lying 50-100 

WWBS Heart Rate Walking 60-110 

WWBS Respiration Rate All 12-28 

Blood pressure 
monitor 

Systolic Blood 
Pressure 

Standing/sitting 100-140 

Blood pressure 
monitor 

Diastolic Blood 
Pressure 

Standing/sitting <90 

 

While heart rate and blood pressure normal ranges can be applied uniformly to all 
participants, the respiration rate is something that varies significantly in older 
people. Currently the above limits are selected based on [22], but in the future they 
will be personalized for each participant. 



 

May 2018 -18- 

 

 

 

The examination of participants’ physiological parameters according to these ranges 
was performed by multiple aspects: 

• If the daily average of a participant heart rate or respiration rate falls out of 

the above ranges while performing an activity, then an alert is generated. 

• If the heart rate or the respiration rate of a participant falls out of the normal 

ranges for a duration of few seconds, then we assume it is an outlier caused 

by an erroneous measurement. If the duration of abnormal values persists 

for longer time, then an alert is generated indicating the time period and the 

average value for the respective period. This type of alert is important, as one 

participant can e.g. experience normal daily average heart rate but his/her 

measurements for a specific period of the day could be abnormal. 

• If the average daily values of the systolic/diastolic blood pressure fall out of 

the normal ranges, then an alert is generated for the specific day. 

• If the value of the systolic blood pressure for a participant is measured to be 

under the threshold at any measurement taken, then an alert is generated as 

it can an indication of hypotension. 

Besides the alerts generated from the abnormal values of the physiological data, 
there are additional alerts generated from the clinical evaluation data which are 
inserted into the eCRF system. The thresholds for these alerts were defined by the 
clinicians and are shown in Table 2. 

 

Table 2: Normal ranges of clinical data. 

Source Measured Entity Acceptable Range 

eCRF BMI 18-30 

eCRF MMSE ≥ 24 

eCRF MoCA ≥ 26 

eCRF Alcohol consumption (units) ≤ 28 for men, ≤ 21 
for women 

eCRF Medications taken ≤ 4 

eCRF Significant comorbidities < 1 

 

The predefined thresholds set above for the alerts generated from the abnormal 
values of the physiological and clinical data, can be used for all the participants of 
the FrailSafe study. However, as these values cannot capture the individual 
characteristics of each participant, the clinician will be able to change and 
personalize the thresholds accordingly.  
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The online data analysis components run in real-time and in case they detect any 
emergency situations they trigger an alarm. The real-time alerts generated are: 

a. Social media text alert: It is generated by the social media sensing platform, 
when it detects suicidal manifestation in a text posted by the participant in 
his/her social media accounts.  

b. Fall detection / instability alert: It is generated by the fall detection android 
app, when it detects that the participant has fallen or that he/she shows an 
increased instability. 

c. Loss of Orientation alert: It is generated by the respective application, when 
the participants experiences signs of disorientation in his/her outdoor 
movement. 

2.3 Decision Support System API 

The alerts generated by the offline and online data analysis, which are described in 
the previous section, are sent to the DSS module and are visualized by the DSS UI 
module. The data stored in the DSS module are also shared with the games platform 
in order to personalize the games for each user. For the purpose of communication 
between the DSS and the other submodules of the FrailSafe system, an API was 
created. At the time that this deliverable is written, the API can be accessed by 
directing the URL in this address: 

http://172.16.2.50:5052/dss/ 

 

The access is limited to the submodules that are part of the FrailSafe cloud private 
subnet (as it is defined in the D1.4). The internal structure of the DSS module and the 
connection with external submodules are depicted in Figure 2. 

 

http://172.16.2.50:5052/dss/
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Figure 2: FrailSafe Decision Support System module. 

 

 

The list of commands that the DSS API allows are the following:  

• fetch_ids: Fetches a JSON containing all participant IDs for whom there are 

VPM data stored. 

• fetch_demographics: Fetches a JSON containing all demographic data stored 

in the VPM. 

• fetch_pid_demographics: Fetches a JSON containing demographic data 

stored in the VPM for one specific participant. 

• fetch_all: Fetches a JSON containing all VPM data stored. 

• fetch_pid_data/<pid>: Fetches a JSON containing all VPM data stored for one 

specific participant. 

• fetch_pid_date_data/<pid>/<date>: Fetches a JSON containing all VPM data 

stored for one participant on a specific date. 

• fetch_pid_latest_data/<pid>: Fetches a JSON containing the latest VPM 

parameter values stored for one specific participant. 

• fetch_center_data/<cid>: Fetches a JSON containing all VPM data stored for 

each clinical center. 

• fetch_all_interventions: Fetches a JSON containing all interventions stored. 

• fetch_pid_interventions/<pid>: Fetches a JSON containing all interventions 

stored for one specific participant. 
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• fetch_pid_latest_interventions/<pid>: Fetches a JSON containing latest 

interventions stored for one specific participant. 

• fetch_all_alerts: Fetches a JSON containing all alerts stored. 

• fetch_pid_alerts/<pid>: Fetches a JSON containing all alerts stored for one 

participant. 

• fetch_pid_date_alerts/<pid>/<date>: Fetches a JSON containing all alerts 

stored for one participant on a specific date. 

• add_social_alerts/<pid>/<date>: Stores alerts coming from social media 

analysis. 

• add_fall_alerts/<pid>/<date>: Stores alerts coming from fall detection / loss 

of stability android app. 

• add_orientation_alerts/<pid>/<date>: Stores alerts coming from loss of 

orientation submodule. 

• add_dss_parameter/<pid>/<date>: Stores the value of a parameter for the 

participant which the clinician has changed using the DSS UI. 

• add_game_parameter/<pid>/<date>: Stores the value of a game parameter 

used by the games platform. 

The API allows the storing of alerts generated either by the VPM data, or by the real-

time data analysis applications (Fall Detection, Loss of Stability, Loss of Orientation 

and Suicidal Text Detection). These alerts can be classified in three categories, based 

on the duration of the event detected: 

a. Instant alerts, which are produced due to an unusual measurement at a 
specific time, i.e. elevated blood pressure at a specific time or suicidal 
manifestation in a text posted in social media. 

b. Daily alerts, which are produced when daily user measurements exceed 
predefined thresholds, i.e. elevated average heart rate for a specific day. 

c. Periodic alerts, which are produced due to unusual measurements over a 
period of time, i.e. elevated breathing rate for one hour. 

 

2.3.1 Example 1: Export all alerts stored in the DSS 

 

Command: GET /fetch_all_alerts 

 

Parameters: No parameters required  

 

Response: Response is a json object containing all alerts  

 

The parameters in the json response are described below: 
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pid:  participant id 

date: date of alert 

type: type of the alert (allowed: daily, instant, period) 

from: beginning of alert period in case of period type alert 

to: ending of alert period in case of period type alert 

time: time of the alert in case of instant type alert 

value: alert value 

description: description of the alert 

activity: activity performed by participants when alert occurred in case of high/low 
hr (heart rate) or br (breath rate) alerts (values: 1.0 for standing/sitting, 2.0 for lying, 
3.0 for walking, 4.0 for walking upstairs, 5.0 for walking downstairs). 

 

Use case: 

Request: curl http://172.16.2.50:5052/dss/fetch_all_alerts 

Response: 

{"Results": [ 
    { 
      "data": { 
        "activity": "1.0",  
        "avg": "7.61180657333",  
        "description": "low_br" 
      },  
      "date": "20161210",  
      "from": "20161210T03:39:25.000",  
      "pid": "1042",  
      "to": "20161210T03:40:09.000",  
      "type": "period" 
     },  
    { 
      "data": { 
        "description": "high_avg_diastolic",  
        "value": "96.5" 
      },  
      "date": "20170109",  
      "pid": "3001",  
      "type": "daily" 
  }, 
  { 
      "data": { 
        "description": "low_systolic",  
        "value": "99" 
      },  
      "date": "20170123",  
      "pid": "3033",  
      "time": "14:52:00",  

http://172.16.2.50:5052/dss/fetch_all_alerts
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      "type": "instant" 
    } 
]} 

 

2.3.2 Example 2: Store alert data coming from social media analysis 

 

Command: GET /add_social_alerts/<pid>/<date> 

 

Parameters:  

<pid>: participant’ s id 

<date>: datetime of the alert (in format YYYYMMDDTHH:mm:ss) 

 

Response: Response is a json object containing message about the query result. 

 

Use case: 

Request: curl -H "Content-Type: application/json" -X POST -d '{"social_media":"facebook", 

"description":"suicidal_manifistation", "field1": "value1","field2": "value2}' 
http://172.16.2.50:5052/dss/add_social_alerts/1060/20170909T14:52:00 

Response: 

{ 
  "message": "Alert for participant with id=1060 and ts=20170909T14:52:00 has been added", 
  "status": 200 
} 

 

2.4 Alert visualization panel 

The alerts are visualized by the Decision Support System User Interface (DSS UI) 
which is described in detail in D5.5 and is part of the Clinical Web Platform. The 
Clinical Web Platform is the main interface between users (older persons, families, 
clinicians, researchers) and the underlying FrailSafe database. Through the DSS UI 
users can view the collected data, according to their access rights, through intuitive 
visualizations. 

The alert visualization tab of the DSS UI, visualizes the alerts produced for the older 
persons. Currently, the visualizations are table views of the alerts, where three types 
of alerts are distinguished as described earlier.  

The visualization of these alerts in the DSS UI is differentiated based on the type of 
user that has logged in. The older person can view the alerts generated for him/her 
as shown in Figure 3, while the clinician is provided with an alert panel for all the 
older persons he/she is supervising as shown in Figure 4. 

http://172.16.2.50:5052/dss/add_social_alerts/1060/20170909T14:52:00
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The information displayed for each alert includes the older person’s ID, the alert 
description, the date/time of the alert, as well as any other value related to the alert, 
e.g. the blood pressure value for a “high blood pressure” alert. In future versions of 
the DSS UI, the alert visualization tab will also include graphical visualizations of 
alerts, such as timeline plots, showing the amount of alerts produced through time, 
etc. 

 

Figure 3: Visualization of alerts in the older person. 

 

 

Figure 4: Visualization of alerts in the clinician interface. 
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The clinician is also allowed to modify the alert generation rules and thresholds, or 
add new ones, in order to personalize the alerts for specific older persons, as shown 
in Figure 5. 

 

Figure 5: Alert rule editing screen in the clinician interface. 

 

2.5 Role of inflammation as a risk factor for frailty 

The section aims to examine the influence of the inflammation on our health. The 
role of inflammation in the pathogenesis of frailty has been hypothesized, and so far 
many studies have been performed in order to understand the mechanism of action 
underlying this association. Recent studies support this hypothesis and show a clear 
association between inflammation, frailty, and age-related disease. Chronic 
inflammation is a key pathophysiologic process that contributes to the frailty directly 
and indirectly through other intermediate physiologic systems, such as the 
musculoskeletal, endocrine, and hematologic systems. The etiology of frailty is so 
complex and multifactorial, also including obesity and other age-related specific 
diseases. This has a semantic effect on quality of life in the later years. 

Inflammation is our natural mechanism of maintaining our body’s homeostasis [3]. 
The occurrence of inflammation is inextricably combined with the exposure of our 
inner systems to potentially harmful microorganisms, well known as pathogens. 
However, verified proof reveals that in certain cases, this mechanism falsely targets 
well-functioning cells of the body too, a situation creating the autoimmune 
syndromes.  

Firstly, triggered by the intervention of inflammatory mediators, vasodilation 
escalates the blood flow. Simultaneously, increased permeability of the blood vessels 
results in the leakage of proteins and fluid into the tissue. At this stage, it is evident 
to the human eye that the area has become red, has increased its temperature and 
has become swollen. The loss of function is believed to occur in order to avoid the 
feeling of pain. Afterwards, neutrophils and macrophages take action. Neutrophils 
migrate outside the blood vessels and adhere first into the tissue with the assistance 
of chemotactic gradients, which enable them to become attached firmly onto the 
endothelial cells [4]. Phagocytes have non-specific microbe affinity and efficacy and 
immediately initiate to extinguish the harmful agent by encapsulating it. Next to 
arrive are the macrophages, which move slower inside the blood vessel, but, induce 
a more effective impact than their partners. During the apoptosis of neutrophils, 
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antimicrobial substances, such as NO, OH and H2O2, are released into the blood 
stream destined to destroy the pathological stimuli. However, their effect is not 
specialized towards each specific factor, meaning that the surrounding healthy tissue 
may be damaged. In parallel, this process is enhanced by a group of preformed 
proteins released into the plasma in an inoperative form, the complement system, 
which destroys the injurious factor without encapsulating it, but, by simply creating 
pores on the microbe’s cellular surface. At this point, it is important to point out that 
certain microorganisms and particularly the bacteria have adjusted to this strategy 
by developing an additional protective surface. In these cases, chemical factors, 
named opsonins[5] make contact with the macrophage and the microorganism and 
create a complex. C3b (member of the MAC) and CRP (C-reaction protein) belong to 
this category [6, 7]. The procedure described above concerns cases where the 
human body becomes exposed to the harmful factor for the first time.  

Human body is so resourceful that it has developed a method of “saving” the 
different types of pathologic agents. This results to even more immediate and acute 
response if one “saved” agent enters the human body. In this situation, it is again the 
macrophages who initiate the process. After encapsulating the agent, they divide it 
into smaller protein molecules. Subsequently, each molecule gets attached to MHC 
|| proteins and becomes exposed to the cellular surface. At this point, the CD4 cells, 
through a unique receptor specialized for this specific antigen comes in contact with 
the macrophage. The connection between the two, is also enhanced by the presence 
of other proteins found on the cell membrane, while, IL-1 and TNF are produced by 
the macrophage in order to activate fully the CD4 cells. 

The CD4 cells, then, release IL-2 which leads to the increase of their population 
forming clones and the activation of B cells. B cells are responsible for three major 
roles [8]. Firstly, they mature into plasmacytes that produce antibodies which enter 
the blood stream. Each antibody is genetically destined to recognize one and only 
particular antigen. Secondly, a part of B cells population transforms into memory B 
cells. Moreover, it is possible that they behave like the macrophage, revealing an 
injurious antigen to the CD4 cell.  

The complex of an antibody and an antigen enables the destructive efficacy of the 
macrophage.  

Inflammation appears to be a mechanism triggered by one single incident and to be 
completed with the elimination of the pathogen. However, in certain cases it may 
become established in a particular area of the human body and cause continuously 
the mentioned symptoms.  

Nowadays, science has progressed significantly enough to comprehend most of the 
extremely specific and complicated steps our body takes to protect itself. Thanks to 
this, we are able to examine how inflammation contributes among others to frailty. 
The base of the hypothesis is a linkage between high levels of cortisol and the 
activation of inflammation markers [9]. It is believed that specifically the incidents of 
chronic inflammation are responsible for the “weakening” of the individual’s stamina 
[10].  
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Since it has come to our realization that despite our material wealth, increased 
access to goods like sterilized water, safely preserved food and advanced drugs, the 
human population faces an even wider range of health issues seemingly relevant to a 
series of inflammation incidents, we ought to wonder: why is frailty so common 
among the population? 

The question raised above derives from the simple example of the Galapagos Islands. 
Even though the islands’ biodiversity is under threat from several sources, we cannot 
help but notice that the Galapagos tortoise has managed to become the longest 
living of its species. A probable explanation would be that the Galapagos Islands 
have been a secure and isolated environment in general terms. That is, stress-
increasing factors have been almost eliminated and each species has been 
successfully adjusted to its natural habitat [11].  

The example described above brings us to a second question: is anxiety valued 
sufficiently based on the influence it imposes on our quality of living? 

Aiming to reach a reasonable conclusion, it is necessary to evaluate in detail each 
and every aspect of the majority’s way of living that is potentially stress provoking. A 
balanced psychological status may determine the outcome of everyday life. 
Nevertheless, depression affects an alarming number of citizens from all social 
strata. Based on WHO, there are 350 million people from all age groups worldwide 
suffering from major depression symptoms and over 800.000 of them are led to 
suicide each year. Depression is a mental disorder of which most frequent symptoms 
consist of uncontrollable sadness, isolation from social activities, inability to 
concentrate, random emotional fluctuations, constant tiredness and abnormal 
behaviour [12, 13]. Such symptoms are also intensified by solidarity -which is, in 
most times, a conscious personal choice-, financial and social discrepancies like 
bankruptcy and racism and in certain cases, the unfortunate choice of profession 
along with inappropriate working conditions. According to studies, depression seems 
to affect the female population more often than the males[14]. 

Secondly, it is essential to take each person’s genetic background into account. It is 
probable that most of the population have inherited altered biochemical paths 
encrypted into the DNA, resulting to, for example, the abnormally excessive 
production of cortisol into the blood stream or even, falsely triggering the 
inflammation factors after no severe threat [15]. This, automatically, leads to general 
inflammation incidents that target no particular pathogen. In the first case 
mentioned, the gene defect would be translated as a benign mass in the adrenal 
glands while, in the second one, the conditions referring to this situation are the 
autoimmune syndromes, like rheumatoid arthritis [16].  

On the other hand, health wise, cardiovascular abnormalities in combination with 
chronic high blood pressure, hyperlipidemia and diabetes exhaust the resources of 
the human body [17, 18]. The simultaneous effect of the conditions mentioned may 
be found in a vast amount of men over the age of 45 and women over the age of 55 
(women can be protected thanks to estrogens) and also be linked with genetic 
predisposition [19]. Such patients are advised to receive medication for life to 
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prevent the formation of atheromatic plaque in the blood vessels and to prolong 
their life expectancy. Such conditions could develop into constriction of the blood 
vessels in the extremities, sudden ischemic and bleeding strokes, aneurisms etc. 
However, it is common act that not only do they neglect the regular visits to their 
specialists, but also, in some cases, they take no action about. Unfortunately, 
physicians confirm that prevention could be accomplished in condition that citizens 
are thoroughly informed and educated about the importance of regular check-ups. 

The excessive release of cortisol in the blood stream may also contribute to a 
generalized hormonal alteration. Automatically, the human body will start producing 
hormones uncontrollably and under no specific mechanisms of action [20]. For 
example, CRP and PTH will increase, the first one triggering the mechanism of 
inflammation while, the second one, destructing the bone tissue. This may also lead 
to loss of appetite and malnutrition. The latter is responsible for not only causing our 
metabolic rhythms to cease, but it also leads to major muscle tissue loss. It comes as 
logical conclusion that major bone and muscle tissue loss will result in the so called 
frailty of the elderly [1]. 

Furthermore, examining the example of the Galapagos Islands, we ought to point 
out that throughout history the organisms inhabiting the islands have developed 
unique ways of surviving [21]. For instance, the iguana of the Galapagos has 
developed the ability to dive up to 10 metres underwater and feed on sea creatures. 
Its capacity might be the answer to a previous shortage of food on land, or, a sudden 
increase in the iguana’s population. It is the instinct for survival that led the iguana 
for food underwater, a plan that proved successful and was later on encrypted into 
the species’ genome. In this situation, it is clear that there is a positive effect of 
stress provoking situations too, because they contribute to the progression of 
species. 

As a conclusion, cortisol and inflammation may become an ally to the amelioration 
of human race, but, they also create numerous health issues, sometimes minor, but 
others, severe which decrease the quality of life. 
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3 Clinical State Prediction 

3.1 Probabilistic models of frailty by Multi-Instance Learning (MIL) 
techniques 

3.1.1 Background 

In many real-life applications, collected data come in a format where a single 
example cannot always be represented as a single feature vector. For example, 
images depicting several objects, text documents covering several topics or 
molecules with different conformations having different chemical properties. In all 
these cases, representing an example as a collection of feature vectors (e.g. patches 
or segments of an image, paragraphs in a document etc.) is a more efficient way of 
preserving as more information about an example as possible. On the other hand, 
this representation needs a more refined level of annotation which means that each 
of the feature vectors describing an example (i.e. instances) need to be annotated 
(which is not always possible). Furthermore, there may be instances inside a bag that 
don’t provide any information about the bag’s class or even more commonly, 
instances that are closer related to another class (than the one the whole object 
belongs to), thus providing misleading information.  

To deal with such problems supervised learning techniques have been reformulated 
and extended to multiple instance learning (MIL) schemes, with the first work 
appearing in 1997 [23]. In this setting subjects are sets (bags) of feature vectors 
(instances) and labels are provided only for the subjects.  

In order to deal with the MIL problem a classifier fB must be trained which will be 
able to classify new unseen bags (i.e. collection of instances). According to [24] MIL 
classifiers can be categorized in three sets: (a) Instance space classifiers, which 
consider that the discriminative information lies at the instance level, (b) Bag space 
classifiers, which consider that the discriminative information lies at the bag level 
and since the bag space is a non-vector space, a distance function between bags D(X, 
Y) or a similarity kernel must be defined that can be used to construct the classifier, 
and (c) Embedded Space classifiers, where each bag is mapped to a single feature 
vector which contains relevant information about the whole bag. 

MIL basic concepts 

Formally a bag is a set 𝑋 = {𝑥1⃗⃗  ⃗, 𝑥2⃗⃗⃗⃗ , … , 𝑥𝑁⃗⃗ ⃗⃗  } of feature vectors called instances, 
describing an example (e.g. an image or a document). The cardinality of the bags can 

vary. All instances 𝑥𝑖⃗⃗  ⃗ ∈ ℝ𝑑 belong to a d-dimensional space, called instance space. 
The objective of the MIL problem is to train a model that can predict class label of an 
unseen bag. In other words, our task is to estimate a classification function 𝐹(𝑋) ∈
[0,1] that provides the likelihood that X is positive. In order to estimate F we are 
given a training set of M bags and their corresponding labels: 𝒯 =
{(𝑋1, 𝑦1), (𝑋2, 𝑦2), … , (𝑋𝑀, 𝑦𝑀)}. When required, (such as in the case of instance 
space classifiers), it is assumed that all instances of a given bag inherit the label of 
the corresponding bag. 
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In the MIL framework the label of each bag, as described earlier, is known but the 
individual labels of each instance of a bag are unknown. From the introduction of 
MIL in [23] a strong assumption was made regarding the labels of the instances of a 
bag and the label of the corresponding bag, referred to as standard MI assumption. 
Under this assumption each instance of a bag has a hidden positive or negative class 
label characterising the instance as positive or negative. The bag is considered to be 
positive if and only if contains at least one positive instance. Although this 
assumption is believed to be suitable for many MIL datasets (e.g. the MUSK drug 
activity prediction problem), alternative MI assumptions are proposed [25] making 
MIL appropriate for diverse datasets and problems. For example the collective 
assumption proposed in [26] assumes that all instances in a bag contribute equally to 
the bag’s label. Under this assumption instances are assumed to have class labels 
according to some unknown probability distribution and the bag label is determined 
by the expected class value of the instances of the corresponding bag. 

3.1.2 Problem formulation of frailty prediction 

Before formulating properly the problem of frailty status prediction in the context of 
MIL we will give some intuitions in our context. In the daily life recordings, the 
tracked activities are neither discrete and predefined (as in controlled experiments), 
nor the duration of the recordings is the same across subjects. Using the sliding 
windows technique, we can split the recordings of each individual in (overlapping) 
time windows (of constant length for all subjects) that describe a local (in time) 
aspect, and thus we can capture the diverse unknown activities of each subject. On 
the other hand, the frailty status is a characteristic of the person, which means there 
is no label information for each “activity” (i.e. each time window). The term 
“activity” here should not be considered identical with the Activities of Daily Living 
(ADL) defined and automatically classified in the deliverable D4.2. These included 
characterizations of the subject’s motion, such as walking, sitting, laying down etc. 
Here we generalise the notion of the term “activity” to include additionally to 
motion (captured by the accelerometer) also other physical conditions (captured by 
ECG and breathing sensors). However, our goal here is not to segment the biosignals 
into predefined discrete activities, but to use the activity patterns (no matter what 
they represent) as clusters of data with reduced intra-cluster variability. This latent 
space allows to summarize the data and facilitates inference. As activities of each 
individual are unknown, and not every activity is related to the frailty status of the 
individual (e.g. recordings while resting are not expected to provide discriminative 
measurements (i.e. features) for frailty classification) the problem of frailty 
prediction cannot be formulated as MIL problem using the standard MI assumption 
(where the bag is considered to be positive if and only if contains at least one 
positive instance), since we do not really know which activities are related to frailty 
status. We can assume, furthermore, that there must be patterns of activity that are 
not discriminating regarding the frailty status and patterns of activity that can be 
associated to frailty. 

In order to formulate the problem of frailty prediction in the MIL framework we 
represent each subject as a bag and the time windows of the recordings as the 
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instances of each bag. We represent the data as tensors 𝒳(𝑖),  i = 1,2,...,nrOfSub 

which are considered to be the bags, while the slices 𝒳𝑟,:,:
(𝑖) ∈ ℝ𝐽×𝐾 are considered to 

be the instances of Bag i. Labels are only provided for bags, so 𝑌𝑖 ∈ {0,1,2} are the 
labels corresponding to non-frail, pre-frail and frail group. Initially instances inherit 
class labels from the corresponding bag and subsequently class probabilities are 
updated based on the assumptions that not all instances of a bag are informative in 
terms for frailty status prediction. The calculated probabilities provide a measure of 
discrimination and allow us to detect the most informative patterns. Next, we 
explain the method in more details and assess it based on the currently available 
recordings. 

 

3.2 Development of MIL framework and application to FrailSafe data 

3.2.1 Constructing the training set 

In the context of FrailSafe, data are collected from individuals in different sessions, 
using the two different developed products of Smartex for the measurement of the 
physiological signals: the WWS (Wearable Wellness System)1, which was used in the 
first phase of the project and which we will also call “strap”, and the WWBS 
(Wearable WBan System) which is the new wearable solution, referred to as “vest” 
here. The WWBS takes its origin from the WWS (Wearable Wellness System)2, with a 
further integration of some Inertial Measurement Units (IMUs) in order to have 
information of higher quality with regards to movement analysis. Together with data 
on movement, posture and physical activity, it records also data from the heart (a 
full ECG lead, similar to standard Einthoven DI lead) and respiration. 

Signals from 7 different channels are monitored during the sessions: 

1. Respiratory raw signal (by the piezoresistive sensor) 
2. Acceleration 
3. Breathing amplitude 
4. Breathing rate 
5. ECG Heart Rate 
6. ECG Heart Rate variability 
7. ECG RR interval 

First time synchronization of the channels is performed by interpolating all 
recordings at 25 Hz, then signal segments of low quality are discarded and frames 
(e.g. of 1 minute duration) are extracted using the sliding windows technique. The 

multiple frames of each subject are concatenated in a 3 dimensional tensor 𝒳(𝑖) of 
dimensionality 𝐼𝑖 × 𝐽 × 𝐾, i=1, 2,..., nrOfSub, where Ii is the number of time windows 
available for each subject, J is the number of time points corresponding to each time 
window and K is the number of channels monitored. The number of time windows 
varies across subjects, but J and K are fixed for all subjects. 

                                                      
1 http://smartex.it/index.php/en/products/wearable-wellness-system 
2 http://smartex.it/index.php/en/products/wearable-wellness-system 
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Figure 6. 3d-tensor for one subject (left) and 3d-tensor of all subjects (right). 

In order to construct our training set we concatenate all tensors 𝒳𝑖  along the first 
dimension to produce a new 3D-tensor 𝓧 containing all the time windows of all the 
subjects as is shown in Figure 6. Labels 𝑦𝑖 ∈ {0,1,2}, (where 0 corresponds to non-
frail, 1 to pre-frail and 2 to frail group) are also provided for each subject.  

3.2.2 Data cleaning and representation 

Besides the preliminary cleaning of the data, based on the quality of the recordings, 
we performed a series of more elaborate cleaning procedures since we discovered 
outliers in some measurements that are probably due to bad recordings. These 
procedures are summarized below. 

1. For the channel measuring the breathing rate we consider only recordings 
with values in the range [8, 50] that are accepted values of breathing rate, 
and discard all other recordings. 

2. For the channel measuring the heart rate we consider only recordings with 
values in the range [40, 200] as they are accepted values of heart rate. 

3. For all other channels we discard values that belong up to the 5% quantile 
(i.e. the lower 5% of the values) as well as the values belonging to >95% 
quantile (i.e. the highest 5% of the values) 

4. We keep only these time windows, which have in each channel more than 
10% non-outlier values. 

5. We construct for each instance (i.e. time window) per channel histograms 
using as bin centres the 30-quantiles. 
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The output of this procedure is a tensor of dimensions 10503 ×  30 ×  7 containing 
at each slice the histograms per channel of each instance. Thus, we have 10503 time 
windows, 30 bins per instance’s histogram and 7 channels. 

Since two different devices are employed for acquiring measurements we briefly 
summarize the number of instances (i.e. time windows), the number of bags (i.e. 
subjects) per class and per device in Table 2. Some subjects have more than one 
session and possibly not both with the same device, thus the total number of 
subjects is smaller than the sum of data with strap and vest. 

 

Table 3 Summary of the data 

Data Summary per class 

 Strap Data Vest Data Total 

Time windows 7003 3500 10503 

Number of subjects 89 27 104 

Non-Frail 38 9 43 

Pre-Frail 42 13 49 

Frail 9 5 12 

3.2.3 Feature extraction by tensor decomposition 

In order to extract features from the multidimensional data described earlier, we 
employ the well-known tensor decomposition method PARAFAC. We will briefly 
resume the PARAFAC method and we will explain how we can extract features for 
MIL problems. 

PARAFAC decomposition is a powerful tool in tensor analysis. In PARAFAC 
decomposition the aim is to approximate the 𝐼 × 𝐽 × 𝐾 tensor 𝒳 by a sum of rank-
one tensors, referred to as latent factors. Formally 

𝒳 ≈ ∑ 𝒂𝒓 ∘ 𝒃𝒓 ∘ 𝒄𝒓
𝑅
𝑟=1  (1) 

where 𝒂𝒓 ∈ ℝ𝐼 , 𝒃𝒓 ∈ ℝ𝐽, 𝒄𝒓 ∈ ℝ𝐾are the columns of the factor matrices 𝑨 ∈
ℝ𝐼×𝑅 , 𝑩 ∈ ℝ𝐼×𝑅 , 𝑪 ∈ ℝ𝐼×𝑅respectively, “°” denotes the outer product and R is the 
rank of the tensor. Element-wise the PARAFAC decomposition can be written 
as 𝑥𝑖,𝑗,𝑘 ≈ ∑ 𝑎𝑖𝑟𝑏𝑗𝑟𝑐𝑘𝑟

𝑅
𝑟=1 , 𝑖 = 1,2, … , 𝐼, 𝑗 = 1,2, … 𝐽, 𝑘 = 1,2, … , 𝐾. 

Sometimes PARAFAC decomposition can be written as 

𝒳 ≈ ∑ 𝜆𝑟𝒂𝒓 ∘ 𝒃𝒓 ∘ 𝒄𝒓
𝑅
𝑟=1  (2) 

where 𝜆𝑟 illustrates the significance of each latent factor. Figure 7 depicts in a 
graphical way the PARAFAC decomposition. 
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Figure 7 The PARAFAC decomposition 

Our goal is to extract features for each instance (i.e. time window) 𝑥𝑖,:,: ∈ ℝ𝐽×𝐾, 
where 𝑥𝑖,:,: is the i-th slice of tensor 𝒳. Each instance can be written as 𝑥𝑖,:,: ≈
∑ 𝑎𝑖𝑟(𝑏𝑟 ∘ 𝑐𝑟)

𝑅
𝑟=1 , meaning that each instance is a linear combination of 𝒃𝒓 ∘ 𝒄𝒓, 𝑟 =

1,2, … , 𝑅, with coefficients 𝑎𝑖𝑟 , 𝑟 = 1,2, … , 𝑅. Thus, we can choose as features, for 
describing an instance, the coefficients 𝑎𝑖𝑟 , 𝑟 = 1,2, … , 𝑅, that is the i-th row of 
factor matrix A. Furthermore, we can normalize the columns of A and choose as 

features the matrix 𝑨̃, where 𝑨 = 𝑨̃ 𝑑𝑖𝑎𝑔(𝜆𝑟), and 𝜆𝑟 , 𝑟 = 1,2, … , 𝑅 are the scaling 
factors of each column. 

3.2.4 One class-SVM for frailty status prediction 

Here we will describe our MIL approach for training a model to predict the frailty 
status based on the data collected from FrailSafe. Firstly, we will give the concept 
and some intuitions that led us to formulate this approach and subsequently we will 
describe our methodology. 

As aforementioned, in the setting of FrailSafe, subjects wear devices and perform 
tasks in their daily life that not all of them associated with their frailty status. As a 
consequence, we need to be able to distinguish instances that are more informative 
for discriminating the frailty status of the subjects and relying only on them to 
predict the subject-wise labels. 

Figure 8 depicts the class boundaries of the three classes (Non-Frail in green, Pre-
Frail in blue and Frail in red) using the three significant features, extracted as 
described in the previous section. We can observe that only a part of the instances 
can be informative in terms of predicting the frailty labels and these are the 
instances that lay in the region of each class that does not overlap with other classes. 
As this figure is a 3-dimensional projection of our 30-dimensional features it is only 
indicative and obviously does not provide any proof. 
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Figure 8 The class boundaries of instances for the 3 significant features: Non-Frail in green, Pre-Frail 
in blue and Frail in red. 

In order to deal with the problem of searching the informative instances and rely on 
them for predicting bag labels we train 3 distinct classifiers for each class separately 
to learn class probability distributions and then we annotate as informative instances 
only these that have a clear classification based on all the three estimated 
probabilities. With the term clear (i.e. not ambiguous) classification we mean that 
there are not conflicts in the prediction, i.e. only one classifier recognizes the 
instance as positive for its class, with the other two classifiers labeling the same 
instance as negative for their class. 

One-class SVM  

In our approach, features are extracted using the PARAFAC decomposition method 
discussed in a previous section. In order to maintain consistency of our model and 
factor matrices B and C (both for training and test set), we concatenate along the 
first dimension the training and test tensors (𝒳𝑡𝑟𝑎𝑖𝑛,  𝒳𝑡𝑒𝑠𝑡) to a model tensor 𝒳 and 
perform PARAFAC decomposition to 𝒳. The training features are the rows of factor 
matrix A that correspond to 𝒳𝑡𝑟𝑎𝑖𝑛 while the test features are the rows of A 
corresponding to 𝒳𝑡𝑒𝑠𝑡. 

Subsequently we train three one-class SVM classifiers each one on instances of each 
of the classes, using Gaussian kernels. In that way, each classifier is trained to 
discriminate one of the three classes. We then use each of the above classifiers to 
predict instance-level labels on the test set. In this stage we have 3 distinct 
predictions for each instance, one from each classifier. 

In the next step we want to discover the informative instances. An informative 
instance can be defined as an instance that has been classified from exactly one 
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classifier to belong to the class, which the classifier is trained to recognize, and 
classified by the other two classifiers as not belonging to their corresponding classes. 
Using these extracted informative instances, we will predict the bag-level labels. 

For predicting subject-wise (i.e. bag-wise) labels we rely on the informative instances 
that we found in the previous step. The label decision is made by counting by a 
majority voting scheme, i.e. the class assigned to each subject is the one with the 
most votes. If no informative instance is found, a label of -1 is assigned to the subject 
meaning no decision could be made. The full algorithm is shown in Table 2. 

 

Table 4 Fusion of one class SVM models in MIL setting 

 

3.2.5 Results 

We evaluated this method separately on data collected by the FrailSafe devices. In 
the next section we will use the term “vest” for the "Wearable WBan System 
(WWBS)" and the term “strap” for the “Wearable Wellness System (WWS)”. We 
conducted 5-fold cross validation and we report the average testing accuracy over all 
folds. The features were extracted as reported using the PARAFAC decomposition; 
the rank of the decomposition was chosen to be 30. We assess performance on 
normalized features (matrix A as presented in equation (2)) as well as in original 
features (matrix A as presented in equation (1)). In the first case the λ parameter 
(the parameter that denotes the significance of each feature) is not taken into 
account. In contrast, in the second case (i.e. not normalized features) the λ 
parameter is incorporated into the feature matrix A so the features are scaled by 
their significance value as calculated via the PARAFAC decomposition (see section 
3.2.3). 

Algorithm: 3 one class_SVM for frailty prediction 

Input: training instances’ feature Xtr, training labels Ytr, test instances’ feature matrix Xts, test subject 
ID’s SubIDtest, 
Output: predicted subject level labels Yts 
 
1. Extract positive training examples of each class P0, P1, P2 
2. Train 3 one-class SVM models SVM0, SVM1, SVM2, for recognizing classes 0, 1 and 2, using Xtr 

and P0, P1, and P2 respectively. 
3. for i=0 to 2 

using SVMi and Xts predict the labels 𝑌𝑡𝑠
𝑖 ∈ {−1,1}of the test set 

end for 
4. for each subject i 

a. find the instances of each subject Inf_Insti that satisfy the equation ∑ 𝑌𝑡𝑠
𝑖2

𝑖=0 = −1 (i.e. 
the informative instances) 

b. assign to each subject the class label of the most predicted class out of Inf_Insti. 
c. if Inf_Insti== empty  

do not assign any label to this subject 
end if 

end for 
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In Table 5 we can see the obtained average accuracy across 5 folds based on cross 
validation for classification of the frailty status into 3 classes. It can be observed that 
the accuracy is 48.7% for the vest data when features are not normalized and 
46.14% for the strap data, while for normalized features the accuracy is 40.7% for 
the vest data and 40.6% for the strap data. We observed that when using not 
normalized features better performance in acquired for both the strap and vest 
recordings. The data from strap (WWS) were acquired in the first phase of the 
project when the vest was not available yet and their collection will not continue. 
Therefore, the accuracy of the method on the data from WWBS is more important. 
Although the classification accuracy (48.7%) seems low, it is slightly increased in 
comparison to random guess (33.3%) and also it is expected that the availability of 
more data samples and more variables (from the rest of the FrailSafe devices and 
clinical scores) will help to improve prediction. 

 

Table 5 Average 5-fold Cross Validation accuracy 

 Data from 
strap (WWS) 

Data from vest 
(WWBS) 

Normalized Features (matrix 
A from eq. (2)) 

40.6% 40.7% 

Not Normalized Features 
(matrix A from eq. (1)) 

46.14% 48.7% 

 

3.3 Convolutional Neural Networks for prediction of frailty status 

Our previous methods for classification or modelling, presented in previous 
deliverables of WP4, generally relied on the usage of domain specific features 
normally selected based on literature or by clinical experts. Finding the best features 
was the subject of a lot of research and the performance of the classifier was heavily 
dependent on their quality. The advantage of deep neural networks and especially 
convolutional neural networks (CNNs) is that they can learn such features by 
themselves, reducing the need for human experts. A recent review on deep learning 
techniques for time series analysis can be found in [27]. 

Building upon our previous work on deep CNNs [28], we aim to implement a deep 
architecture that employs convolution and pooling operations to capture the salient 
patterns of the multi-channel time series data at different time scales. The 
architecture will be similar to the one proposed by Yang et al. [29], which showed 
very competitive performance. In this architecture, the convolution and pooling 
filters in the CNN are applied along the temporal dimension for each sensor, and all 
the feature maps for different sensors are unified as a common input for the neural 
network classifier.  
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3.3.1 CNN architecture 

The architecture we implemented is shown in Figure 9. 

 

 

Figure 9: Recognition of frailty using recordings from strap/vest by a deep convolutional neural 
network (CNN). 

 

The method has been implemented using the MatConvNet functions. The specific 
parameters of the several layers are included in the Figure 10. 
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Figure 10: CNN architecture and parameters of individual layers  

 



 

May 2018 -40- 

 

 

 

3.3.2 Fusion of predictions for inter-subject analysis 

A main difference in published works using CNNs for time series classification 
problems is that in the former the classification (e.g. for activity) is performed for 
each temporal window, whereas in our case a single decision score (prediction of 
frailty) has to be made for the whole recording (subject). As described in the 
previous section this is a Multiple Instance Learning problem. Thus, a fusion 
operation is required to assign a class label on each subject based on the decision 
scores of the time windows that constitute the recordings of the subject. We have 
examined several fusion approaches for prediction of the frailty status of each 
subject: 

1. Maximum likelihood and majority voting across time windows: 

The class label is predicted for each time window based on maximum 
probability and then the most frequent class was assigned to the subject. 

2. Maximum similarity of the probability profile:  

A feature vector is extracted to summarize the distribution of probability 
values of being frail for all time windows. Multi-variate regression is 
subsequently performed to learn a linear model that predicts the class labels 
of the training set based on this feature vector. The model is then applied on 
the test set for prediction. 

3. The MIL algorithm MILES [30] is implemented and tested in an iterative 

scheme 

MILES algorithm extends ideas from the diverse density framework [31] and 
the wrapper model in feature selection [32]. The diverse density framework 
is based on the assumption that there exists a single target concept, which 
can be used to label individual instances correctly. The target concept that is 
most likely to agree with the data is then determined by maximizing this 
probability. MILES identifies instances that are relevant to the observed 
classification by embedding bags into an instance-based feature space and 
selecting the most important features. A subset of mapped features that is 
most relevant to the classification problem of interest are selected by 
defining a similarity measure between a bag and an instance. Although any 
feature selection approaches could be applied for this purpose, in MILES a 
joint approach is selected that constructs classifiers and chooses important 
features simultaneously. Classification is performed using the 1-norm SVM 
method because of its excellent performance in many applications. The 1-
norm SVM is also referred to as sparse SVM can be formulated as a linear 
program, which, in general, can be solved efficiently from an optimization 
point of view. 

Our method iterates between CNN and MILES. The deep network extracts 
class probabilities for every time window which are used as features in MILES 
to select the most relevant instances (i.e. time windows). Once the time 
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windows are selected, these are introduced into the pretrained in the 
previous iteration CNN to get updated results (learn new parameters for the 
network). This iterative process resembles the Expectation-Maximization 
(EM) algorithm. 

 

Results  

Results have been produced by all fusion schemes. The obtained accuracy for all 
fusion schemes is similar or slightly less than the MIL framework with tensors 
described in section 3.2. Thus results are not analytically reported. This is possibly 
attributed to the small number of samples (subjects), large dimensionality, 
uncertainty in labelling, and high variability of data that are collected from daily 
living and not in a controlled environment or an experimental setting. All these 
issues make the problem very ill-posed. This is the reason why we tried to tackle this 
problem using standard feature extraction and machine learning techniques. We 
used two approaches, one based on clustering and one based on classification. 
Details on new analysis frameworks are presented in the next sessions along with 
corresponding results.  

 

3.4 Aggregation of temporal parameters towards assessment of 
health transition  

Most of the methods we have developed until now in WP4 focus on the extraction of 
relevant variables and the calculation of regression or classification models for 
prediction of the frailty status or for prediction of intermediate clinical metrics 
(defined in D2.1 as proxy outcomes). Although this was the main goal of the project, 
i.e. to extract new, more sensitive, frailty indices that cover all clinical domains, part 
of the clinical prediction engine includes the very ambitious goal of prediction of 
frailty transition which will facilitate early intervention. A first attempt to study the 
temporal transition and identify relevant variables has been performed in D4.2 
where we calculated the distribution of transition values of the extracted frailty 
indices built from variables from the clinical evaluation, games, and wearable 
garments, while in D4.13 we analysed variables from the social domain. Our newest 
work for the final version of this deliverable (D4.17) includes the dynamic prediction 
based on all (identified as relevant) combined FrailSafe variables or individual 
prediction scores. The availability of measurements over multiple time points allows 
us to track the evolution of the clinical state of the elderly and therefore model 
frailty transition. This was performed following the strategy described next and 
illustrated in Figure 11.  
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Figure 11: Prediction of frailty transition using multiparametric data by advanced machine learning 
techniques. 

 

Variables from different domains were collected together into a data tensor XPxTxM, 
where P is the number of different statistical properties, such as mean and standard 
deviation, T is the number of time points and M the number of modalities, which 
include different devices or different channels within the same device (e.g. from 
WWBS). The first step in this aggregation procedure is the synchronization of 
variables in time. Variables that are collected in sparse intervals, such as during 
clinical evaluation, were propagated to the reference time points either by 
interpolation (for quantitative variables) or by nearest neighbour classification (for 
ordinal variables). If we denote with the binary variable Y the incidence of an event 
(1 if it happened and 0 if it didn’t happen) or the range of values for quantized 
variables (e.g. 1 for small values, 2 for middle values and 3 for high values), the aim is 
to predict Y given X={Xi}, where X is the set of available samples. We have 
investigated several classification algorithms for this goal. As a note, the calculation 
of differences (change in feature values) is a special case of this approach, since the 
mathematical difference is just a linear mapping of the feature space. 

All samples were concatenated and used within a machine learning algorithm to 
predict clinical scores over time (used as proxy measures of health deterioration) or 
possible adverse events, such as falls, not planned hospitalization and death (hard 
outcomes). Results of the prediction of the scores in the different clinical domains 
will be reported in the section, while the prediction of adverse events will be 
discussed in the next section. 

3.4.1 Methods 

The proposed method first builds a multi-dimensional profile of each participant by 
processing the multiple physiological signals to extract meaningful secondary 
measurements (e.g. heart rate from raw ECG). Statistical features are extracted from 
the raw or secondary measurements representing physiological and cognitive state, 
as well as indoor and outdoor mobility behavior. The multi-parametric features are 
subsequently fused into a long feature vector and introduced into a linear and non-
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linear dimensionality reduction technique for extracting a small number of distinct 
patterns.  

Clustering is then performed in this low dimensional embedding space in order to 
discover coherent and well separated groups. The results are evaluated by clustering 
validity criteria and the identified clusters are also compared with the groups 
determined by CGA in respect to several clinical metrics from multiple domains. A 
schematic diagram of the proposed methodology is illustrated in Figure 12, while 
more details on data and algorithms are provided next. 

 

Figure 12: Proposed methodology for finding clusters of the aging population 

 

3.4.1.1 Devices and feature extraction 

The monitoring system consists of an aggregation of sensors, devices, and developed 
software that capture several aspects of the participants’ health status 
(physiological, behavioral, cognitive etc.). In this work we extract features from a 
wearable device for physiological and kinetic monitoring (WWBS), a dynamometer 
for strength measurement, a game platform and a global positioning system (GPS) 
for outdoor monitoring. The devices and the extracted parameters are briefly 
described next. Details about the extracted variables can be found in deliverables 
D4.2 and D4.15. Next we provide a few more details on the time synchronization of 
variables as well as the extraction of variables by taking into account the estimated 
activity of daily living (ADL). 

 

Temporal mapping of variables 

FS variables: Even though all of the FrailSafe devices were given simultaneously to 
each participant, there were several cases in which there were no recordings from 
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one or more devices. This is due to the fact that the participant did not use all the 
devices on the same day, e.g. the participant played the game on a specific day but 
didn’t perform any outdoor activity. In order to be able to use the total dataset 
available, we needed to perform an estimation on the values of the measurements 
of a specific sensor in time points where there was no recording. Hence, the empty 
cells were filled by performing linear interpolation in the range between known time 
points. 

Clinical scores: Additionally, during the FrailSafe study the device and sensor 
recordings are collected regularly during the home visit sessions, whereas the 
participants’ medical data are collected in larger intervals, i.e. during the clinical 
evaluations. In an effort to fuse the clinical data with the device recordings, it was 
necessary to estimate the clinical data values in intermediate time points for which 
there were device recordings available. Since we distinguish two types of clinical 
metrics - the ones quantified in a numeric scale, such as the TUG (Timed Up and Go) 
test, and the categorical ones, such as the frailty status according to Fried - a 
different approach was followed for each of them. The value of the clinical metric at 
the time of the session was estimated by linear interpolation if the variables were 
numeric, or by nearest neighbor interpolation if the variables were categorical. 

 

Extraction of FS variables 

Wearable WBAN System: The WWBS collects data from heart (a full ECG lead), 
respiration, posture and physical activity (IMUs with nine degrees of freedom). After 
time synchronization of all channels, the acquired or calculated signals were broken 
down into segments of main physical activities including moving and not moving 
conditions [36], such as sitting/standing, laying down, walking forward, walking 
upstairs or downstairs, and transition of activity. Such a partitioning of the signal 
(clustering of features) makes interpretation more consistent with human 
perception and allows extracting features within more uniform clusters. Previous 
work has also hinted at the utility of clustering to improve prediction accuracy. This 
has been attributed to its potential to exploit structure in the data and perform 
compression [37]. A set of statistical features was then calculated for each activity, 
resulting to an augmented feature vector containing features that correspond to all 
the activities. Nine statistical properties were calculated: average, standard 
deviation, 5% and 95% percentiles, mode, skewness, kurtosis, energy, entropy. The 
mode corresponds to the peak of the histogram, indicating the most frequently 
encountered value. Kurtosis characterizes the relative peakedness or flatness of the 
histogram, skewness is a measure of the distribution asymmetry and indicates the 
direction towards which the distribution is shifted, while energy and entropy are 
statistical measures of randomness and uncertainty. This feature extraction process 
resulted to 315 (9 statistical properties × 7 channels × 5 activities) variables for 
WWBS. The statistical properties were calculated within each session, defined as the 
time span of one day. That means that recordings acquired in consecutive days are 
treated as independent samples. 
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Game platform and dynamometer: The game recordings include a set of 13 variables 
tracked over time. The first eight features were summarized variables exported by 
the game application characterizing game performance. The last five dynamic 
measurements, concerning the height and the speed of the plane, the distance it 
covered, the remaining lives of the user and the force applied over the game, were 
aggregated by extracting their statistical properties similarly to the analysis of the 
WWBS recordings. Thus, the total number of features from the games was 53 (8 
variables + 9 statistical properties × 5 dynamic variables). 

GPS data: Finally, a number of features was extracted from the GPS data collected 
through the outdoor monitoring application (GPS logger).  

The features from all devices were fused into a 385-dimensional feature vector (315 
from WWBS, 53 from games and 17 from GPS). However, some of the extracted 
variables had many missing values, e.g. when the person did not perform a type of 
activity. Features with more than 20% of missing values were discarded from the 
subsequent analysis. Accordingly, we ended up with 174 features. 

3.4.1.2 Dimensionality reduction  

When dimensionality increases, the volume of the observations’ space grows so 
much that the concept of similarity, distance or nearest neighbor may not even be 
qualitatively meaningful, thus impeding clustering or classification. Therefore, to 
facilitate clustering, we first perform dimensionality reduction based on a linear and 
a non-linear transformation of the data. Specifically, PCA [38] is first applied to 
extract a set of uncorrelated factors and then LLE [39] is used to find a lower 
dimensional embedding of the PCA scores.  

In PCA the eigenvectors of the data covariance matrix corresponding to the largest 
eigenvalues are used to compute linear projections of greatest variance. Thus, PCA 
helps to eliminate redundant (zero-variance) dimensions. This is important in 
monitoring systems that operate also during resting phases. We used 25 
components to represent the data which explained 87.72% of variance. A larger 
number of components was avoided because it would allow to account also for noise 
and random variations which would possibly lead to overfitting.  

In contrast to PCA which performs only translation and rotation of the data, LLE 
recovers global non-linear structure from locally linear fits [39]. Let us consider a set 
of 𝑁 data samples of dimensionality D in the ambient space 𝑅𝐷. If the data lie on or 
near a smooth non-linear manifold 𝑀 of lower dimensionality 𝑑 ≪ 𝐷 then we can 
calculate a neighborhood-preserving mapping from the high-dimensional 
coordinates of each neighborhood to global internal coordinates on the manifold. 
The intrinsic dimensionality (𝑑) is unknown but we used a small number, such as 𝑑 =
2, to facilitate the subsequent cluster analysis. 

3.4.1.3 Unsupervised clustering  

Clustering performs partitioning of the data space into disjoint parts aiming to find 
hidden patterns in the data and gain insight. Since it is an unsupervised learning 
technique it allows an unbiased interpretation of the results, however an inherent 
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difficulty is how to determine the best number of clusters (𝐾). This is usually 
accomplished by employing a second criterion that measures the robustness of the 
clustering, but we tested only the values 𝐾 = 2 and 3, to be in accordance with the 
number of categories of the clinical metrics.  

We investigated four popular clustering algorithms [40], namely the agglomerative 
(Agg), Birch (Bir), spectral clustering (Spec), k-means (KM), and also the combination 
of their results by majority voting (Comb). The algorithms were executed mostly with 
the default parameter values [40] which are described in more details next. 

The agglomerative clustering algorithm recursively merges the pair of clusters that 
minimally increases a given linkage distance. The “euclidean” distance was used as 
metric to compute the linkage; the linkage criterion was the “ward”, according to 
which the algorithm minimizes the variance of the clusters being merged. 

Τhe Birch (Balanced Iterative Reducing and Clustering using Hierarchies) algorithm is 
an efficient and scalable data clustering method appropriate for large datasets and 
based on CF-trees, which serve as an in-memory summary of the data distribution. 
The radius of the subcluster obtained by merging a new sample and the closest 
subcluster was selected to be 0.0001 and the maximum number of subclusters in 
each node (branching factor) was set to 50. 

Spectral clustering makes use of the eigenvalues of the similarity matrix of the data 
and is very useful when the structure of the individual clusters is highly non-convex. 
We select the “arpack” eigenvalue decomposition strategy, while the stopping 
criterion for eigendecomposition of the Laplacian matrix was set to 0.0, the number 
of neighbors to use when constructing the affinity matrix using the nearest 
neighbors method was 10 and the strategy to assign labels in the embedding space 
was “k-means”.  

The k-means algorithm assigns a data point to the cluster whose distance from the 
cluster centroid is minimum and iteratively updates the cluster centroids. The 
maximum number of iterations of the k-means algorithm for a single run was 300, 
the relative tolerance with regards to inertia to declare convergence was 0.0001 and 
the number of times the algorithm ran with different centroid seeds was 10. 

3.4.1.4 Mapping of a new (unseen) data sample 

The analysis of the currently available dataset allows to examine non-linear relations 
in the extracted features and identify data clusters. For new data it might be desired 
to classify them into the previously extracted clusters without rebuilding the models. 
For this purpose, the same feature extraction process should be applied followed by 
projection on the previously calculated principal components to reduce 
dimensionality and extract the scores in the PCA space (considered as ambient space 
RD in the next step). Subsequently, in order to obtain the low-dimensional manifold 
position of the new sample from the ambient space (scores after PCA), the intrinsic 
coordinates based on the samples’ neighborhood representation in high-dimensional 
space have to be inferred. We can assume an explicit mapping from the ambient 
space RD to the manifold space M following the strategy described in [41], i.e. 
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perform the forward mapping by estimating the relationship between RD and M as a 
joint distribution, such that there exists a smooth functional which belongs to a local 
neighborhood. This will result to a small feature vector (with 𝑑 = 2 in our case) that 
can subsequently be assigned to the closest cluster. 

 

3.4.2 Evaluation and Results 

Out of all participants, 69 of them had used all the devices (one or more times) by 
the time the data were extracted for analysis and didn’t have missing values in the 
CGA, thus the rest were excluded from the analysis. The number of sessions was not 
the same for each participant and is illustrated in the form of a histogram in Figure 
13. The total number of sessions for the 69 participants was 924. 

 

 

Figure 13: Histogram of the number of sessions for each participant 

 

3.4.2.1 Clustering validity  

Since clustering is an unsupervised classification problem, the lack of a gold standard 
makes it difficult to interpret the results and assess their accuracy. There are many 
different measures to check if good clustering has been achieved. The internal 
cluster validity indices quantify the quality of clustering using criteria such as 
cohesion and separation (similarity of an object to its own cluster and to other 
clusters, respectively). One of the most common criteria is the Silhouette index. 
Corresponding results are shown in Table 6 for each clustering result (with two or 
three clusters) and for each clustering technique. It can be observed that the quality 
of clustering is similar in all cases indicating robustness of the approach (coherent 
features).   

 

Table 6. Silhouette index using square Euclidean distance 

Num. 
Clusters 

ALGORITHMS 

Agg Bir Spec KM 
Com
b 
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2 0.96 0.96 0.96 0.96 0.96 

3 0.94 0.90 0.94 0.94 0.94 

3.4.2.2 Clinical profile   

Additionally, to clustering validation with internal criteria, we want to empirically 
investigate what is the predictive accuracy of the obtained clusters. For this purpose, 
we used clinical metrics acquired during CGA (shown in 0). Those metrics are 
selected under the prism of their operational function to quantify frailty, and 
categorized into domains taking under consideration the interrelationships that run 
through the implication of each variable in the various aspects of frailty. Before 
proceeding with classification assessment, we present the clinical characteristics of 
the participants, evaluated in each session, within each of the identified clusters. We 
distinguish two types of clinical metrics: the ones quantified in a numeric scale, such 
as the TUG (Timed Up and Go) test, and the categorical ones, such as the frailty 
status according to Fried [35] . Since CGA does not always coincide temporally with 
the use of the monitoring devices, the value of the clinical metric at the time of the 
session was estimated by linear interpolation if the variables were numeric, or by 
nearest neighbor interpolation if the variables were categorical.  

The differences in the clinical profile of the participants in each cluster are presented 
in Table 7. Results have been produced using the combined clustering algorithm and 
for simplicity are shown only for two clusters (𝐾 = 2). The values are produced by 
averaging if the variables were numeric, or by frequency counting if the variables 
were categorical.  

Table 7. Clinical profile in each cluster produced by the combined clustering algorithm with K=2.  

DOMAIN CLINICAL METRIC Cluster 1a Cluster 2 a 

Medical 

Orthostatic 
hypotension 

No: 96  

Yes: 4 

No: 100 

Yes: 0 

Hearing 
Poor: 27 

Moderate/Good: 73 

Poor: 100 

 Moderate/Good: 0 

Vision 

Poor: 3 

Moderate: 19 

Good: 78 

Poor: 0 

Moderate: 0 

Good: 100 

General 
Condition 

Unintentional 
weight loss 

No: 100 

Yes: .0 

No: 0 

Yes: 100 

Physical 
Condition 

Single foot 
standing 

< 5 sec: 33 

 > 5 sec: 67 

< 5 sec: 0 

> 5 sec: 100 

Time get up and 
go test 

8.48 sec 12.57 sec 

Low physical No: 90 No: 100 
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activity Yes: 10 Yes: 0 

Low grip strength 
No: 61 

Yes: 39 

No: 100 

Yes: 0 

Gait speed (4m) 0.82 m/sec 0.86 m/sec 

Cognitive 

MoCA score[42] 26.85 21.67 

Subjective 
memory complain 

No: 92 

Yes: 8 

No: 0 

Yes: 100 

Psycholo-
gical 

Self-rated anxiety 3.34 2.39 

GDS-15 score [43] 1.24 5.51 

Social 

Leisure club 
participation 

No: 16 

Yes: 84 

No: 100 

Yes: 0 

Leisure activities 7.55 7.0 

Telephone calls 
per week 

15.1 4.0 

Visits / social 
interactions per 
week 

4.45 1.0 

Wellness 

Self-rated quality 
of life  

8.4 5.06 

Self-rated health 
status 

Bad/Medium: 23 
Good: 65 

Excellent: 12 

Bad/Medium: 100 

Good: 0 

Excellent: 0 

Self-rated pain 2.39 8.63 

Lifestyle 

Smoking 
Never: 61 Past: 30 

Current: 9 

Never: 0 Past: 100 

Current: 0 

Physical activity 

<2h per week: 23 

>2h and <5h per 
week: 26 

>5h per week: 51 

<2h per week: 0 

>2h and <5h per 
week: 0 

>5h per week: 100 

Nutrition 
MNA screening 
score [44] 

13.72 10.51 

Frailty Status Fried status 
Non frail: 0.5 

Pre-Frail/Frail: 0.5 

Non frail: 0.0 

Pre-Frail/Frail: 1.0 

a. For numeric variables numbers correspond to average values of the clinical metric, while for categorical 

variables numbers correspond to proportion (%) of sessions within each group 
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3.4.2.3 Predictive accuracy  

We can assume that the clustering algorithm is good for prediction if it agrees well 
with a set of hidden labels using a small number of clusters [37]. We selected the 
previous clinical metrics as ground truth to assess our results. In order to incorporate 
the continuous variables as well, ranges of values have been selected to quantize the 
dataset according to clinicians’ guidelines into 2 or 3 levels, such that all clinical 
variables of CGA were categorical. Since clustering returns unlabeled groups of 
observations, comparison with predefined groups (as the ones obtained by 
quantizing the clinical scores) is not well defined. We searched for the mapping that 
produced the highest overlap between the obtained clusters and the groups defined 
by each clinical metric and calculated the clustering accuracy (number of correctly 
classified samples over total number of samples) according to this mapping for the 
combined clustering algorithm. Accuracy was assessed using 𝐾 = 2 for variables that 
were quantized into 2 levels and 𝐾 = 3 for variables that were quantized into 3 
levels. Additionally to the overall accuracy, we calculated the balanced accuracy, 
which is the average of sensitivity and specificity. The balanced accuracy is more 
informative when the classes are imbalanced since the errors in the small classes are 
not outweighted by correct assignments in large classes. 

Table 8 illustrates the cluster overlap for each of the clinical metrics. For most of the 
clinical metrics the results reveal a high overlap of the identified clusters with the 
groups determined by the clinical metrics indicating the potential of the proposed 
approach to predict the outcome of clinical tests. Highest accuracy is observed for 
the general condition as expressed by unintentional weight loss (100%), nutrition 
(96%), cognitive domain (85% on the average), psychological domain (83.5% on the 
average), and wellness (83% on the average), whereas the lowest accuracy was 
obtained for the frailty status, and the social domain. While the cluster assessment 
facilitated our understanding of the predictive capabilities in respect to the different 
domains, the interpretation of the obtained results in Table 7 remains challenging 
due to the high cluster size imbalance (𝑛 = 893 sessions in cluster 1 and 𝑛 = 31 
sessions in cluster 2). Cluster 2 seems to characterize an isolated profile of subjects 
with mixed physical condition, poor hearing, unintentional weight loss, memory 
complains, mild depression and limited social life (visits, telephone). The 
discrimination ability of the method seems significantly lower when it is assessed by 
the balanced accuracy, which indicates that the smaller cluster is underrepresented. 
Clinical scores that are predicted with high accuracy (>70%) by both evaluation 
criteria (overall and balanced accuracy) include the unintentional weight loss, GDS-
15 score, self-rated quality of life, and the MNA screening score.  

 

Table 8. Clustering accuracy per clinical metric 

DOMAIN CLINICAL METRIC 
Accuracy 
(%) 

Balanced 
Accuracy 
(%) 

Medical Orthostatic hypotension 92 48 
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Hearing Impairment 74 56 

Vision Impairment 68 30 

General 
Condition 

Unintentional weight loss 100 98 

Physical 
Condition 

Single foot standing 65 48 

Time get up and go test 86 60 

Low physical activity 87 48 

Low grip strength 59 47 

Gait speed (4m) 42 37 

Cognitive 
MoCA score 78 57 

Subjective memory complain 92 65 

Psycholo-gical 
Self-rated anxiety 71 48 

GDS-15 score 96 74 

Social 

Leisure club participation 85 59 

Leisure activities 68 36 

Telephone calls per week 52 53 

Visits / social interactions per 
week 

57 39 

Wellness 

Self-rated quality of life  98 84 

Self-rated health status 62 36 

Self-rated pain 89 62 

Lifestyle 
Smoking 66 51 

Physical activity 42 27 

Nutrition MNA screening score 96 73 

Frailty Status Fried status 51 53 

 

 

3.5 Prediction of clinical variables’ outcomes from non-clinical 
measurements 

To inspect the sufficiency of FrailSafe’s non-clinical monitoring components with 
respect to the clinical variables that are claimed to be related to frailty, we designed 
a model that treats the aforementioned measurements as predictive variables and 
feeds them to a classifier to predict the clinical variables. A preliminary version of 
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this work has been reported in D4.15, but a thorough examination is described in the 
following subsections. 

3.5.1 Description of model  

The measurements and corresponding features that were used for this approach 
came from four different FrailSafe components: the WWBS, the GPS, the games and 
the text collections. The preprocessing and feature extraction pipeline has already 
been described in the previous section. The statistical features extracted from the 
corresponding components are treated as a unified feature space, meaning that the 
model is blind about which source has each feature been extracted from. That said, 
the procedure of building a predicting model includes some certain steps to ensure 
that the results will not be questionable in any way. More specifically, since each 
target variable may contain different number of samples and/or subjects, a series of 
rules were applied in order to exclude variables that are impossible to be explained 
and predicted through the features.  

3.5.1.1 Exclusion of very small classes 

To avoid the occurrence of a small dataset, variables that contain more than 20% 
empty rows are immediately excluded. As a next step, we observe the number of 
subjects that correspond to samples of each class. The rule is that if there are at least 
10 unique subjects that belong to each class, then we can proceed to the next step. 
Otherwise, we check the class-cardinality of the variable, and if we are dealing with a 
binary variable, then this target is excluded from the analysis. But in the case of a 
multi-class variable, the action that we take is to merge the class that contains less 
than 10 unique subjects with one of its neighboring classes, choosing the class with 
the fewer samples. Followingly, a standard scaling of the features is performed in the 
range [0, 1], and then we apply PCA decomposition to extract the most meaningful 
components of the features. The components that were kept represented the data 
which explained 98% of variance. The aforementioned pipeline is depicted in Figure 
14. 
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Figure 14: Samples preproscessing pipeline 

 

3.5.1.2 Design of cross-validation scheme 

After preprocessing we constructed a classification model using 10-fold stratified 
cross validation scheme. More specifically, cross-validation indices are created for 
each fold, so that the imbalance that occurs in the original dataset is still existent in 
each split at the same ratio. The imbalance here refers to the number of samples 
existing in each class, and not the subjects. To avoid inserting bias to our model, at 
each fold we transfer occurrences of the same subjects’ samples from the training 
set to the test set, so that no samples of a specific subject are split in the two sets.  

Since the target variables appear to be highly imbalanced, we applied an over-
sampling technique (SMOTE - Synthetic Minority Oversampling Technique) in order 
to populate the minority class with new samples. The latter is only applied to the 
training set of each fold, to enrich the model’s knowledge on the training samples of 
the minority class. The model that was chosen to be applied for the prediction of the 
output was k-nearest neighbors classifier with 5 neighbors, which was also the 
selected classifier for the previously reported analysis in D4.16. The model is fit to 
the training set of each fold and then is applied to the corresponding test set to 
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obtain the classification accuracy. At each fold three different accuracies are 
calculated: accuracy with respect to the samples, accuracy with respect to the 
subjects, and balanced accuracy that takes into consideration the imbalance of the 
dataset. The resulting mean value of the accuracies across the 10 folds are the 
evaluation metrics that are reported as a measure of our model’s performance. A 
detailed report of the aforementioned procedure’s results is presented in the next 
section. 

3.5.2 Prediction results and model discussion 

The analysis that was described above was conducted on a dataset of 1347 samples 
of 87 unique participants. After a first exploratory analysis of the dataset, 6 clinical 
scores were immediately excluded due to a critically small number of samples, while 
the samples that contained empty values were also dropped, resulting in a new non-
missing-values dataset with 1115 samples of 80 unique participants. Regarding the 
phenomenon of few subjects per class that occurred in each clinical variable, the list 
of variables that were excluded as well as the variables whose classes were internally 
merged are shown in Table 9: 

 

Table 9: Exclusion & merging of very small classes 

Excluded variables Variables with merged classes 

Low physical activity Vision Impairment 

Unintentional weight loss Self-rated health status 

MNA screening score Self-rated health status comparison  

GDS-15 score Smoking 

Self-rated quality of life Physical activity 

Self-rated pain Leisure activities 

 

The mean test accuracies that resulted from the 10-fold cross-validation are 
depicted in the following table and the corresponding figure: 

  

Table 10: Classification results of aggregated-devices approach 

Clinical variable Subject 
accuracy 

Instances 
accuracy 

Balanced 
accuracy 

Fried status 40% 42% 45% 

Leisure club participation 61% 60% 52% 

Subjective memory complaint 71% 63% 38% 

Low grip strength 33% 43% 46% 
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Orthostatic hypotension 68% 65% 44% 

Hearing impairment  52% 53% 51% 

Vision Impairment 42% 50% 48% 

Self-rated health status 33% 38% 34% 

Self-rated health status 
comparison   

54% 48% 24% 

Smoking 48% 53% 54% 

Physical activity 51% 43% 47% 

Timed get up and go test 49% 49% 41% 

Gait speed (4m) 32% 33% 33% 

MoCA score 62% 58% 50% 

Self-rated anxiety 55% 52% 49% 

Visits / social interactions per 
week 

52% 48% 40% 

Telephone calls per week 44% 40% 36% 

Leisure activities 72% 69% 60% 

Single foot standing 68% 65% 68% 

Adverse event 57% 58% 60% 
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Figure 15: Plot of aggregated-devices approach accuracies 

What is immediately made clear from the results is that although the classification 
model appears to perform very well on specific variables regarding the per-subjects 
and per-samples accuracy, the corresponding balanced accuracy seems to be quite 
lower than expected, indicating the importance of the imbalance problem. Although 
a series of actions were taken in order to eliminate this issue, it still remains an 
obstacle in creating a robust prediction model, insensitive to new entries. Since 
balanced accuracy is the metric that more accurately reflects the model 
performance, in comparison to the other two accuracies, in the next approaches we 
evaluate our models using this measure. 

A previous analysis that had been conducted on an earlier version of this dataset was 
reported in D4.15, section 4.3.1. Although a strict comparison between the former 
and current work is not feasible due to changes in the dataset and the approach 
followed, one can see the previous corresponding results in Figures 25, 26 and 27 of 
the aforementioned deliverable. It should be mentioned thought that the previous 
analysis focused on building separate models for each FrailSafe component, whereas 
the current approach aims at exploiting a unified feature space to examine the 
possibility of using it as a predictive scheme for clinical variables. Regarding the 
model differences between the two approaches, a k-nearest neighbors classifier was 
selected in our former approach, while at the current study we used a linear SVC 
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model. This decision to change the classifier was made after experimenting with k-
nearest neighbors and realizing that it did not perform as well as in the first case. 

3.5.3 Breaking down the FrailSafe’s components’ predictive capability 

To further explore the potential of a FrailSafe component being able to predict a 
clinical score, we design a set of separate classification models – one for each 
component – that could serve as input to a decision fusion model. The purpose of 
this experiment is to examine the contribution of each component separately in the 
prediction process. This approach corresponds to the late integration step that was 
reported in D 4.15, section 4.3.2. Nevertheless, the current approach is evaluated on 
different set of subjects and samples, as well as more robust evaluation metric. The 
preprocessing steps that were reported in the previous subsection are the same that 
we follow for this approach as well, except for the PCA decomposition which is not 
applied here, as well as the oversampling technique. Since a first attempt to apply 
the aforementioned classification model – a k-nearest neighbors classifier – to the 
current approach resulted in very low classification accuracies, we decided to utilize 
a naïve Bayes model instead. Thus, a Gaussian naïve Bayes classifier is built for each 
of the four FrailSafe components, while for the fusion step a random forest was 
selected as classification model. The fusion is performed across the predictions of 
the separate classifiers, which serve as features for classification. To evaluate the 
performance of our models in an accurate way that reflects the extent of their 
functionality, we again measure the balanced accuracy of the classification process. 
The resulting accuracies are depicted in Table 11 and Figure 16 respectively. 

Table 11: Balanced accuracy of devices-breakdown approach 

Clinical variable GPS  WWSX  Games Text Fusion 

Fried status 50% 51% 58% 53% 55% 

Leisure club participation 52% 63% 63% 51% 73% 

Subjective memory complaint 56% 44% 40% 46% 42% 

Low grip strength 45% 47% 54% 58% 48% 

Orthostatic hypotension 50% 50% 54% 45% 51% 

Hearing impairment  55% 45% 47% 51% 46% 

Vision Impairment 59% 54% 59% 56% 60% 

Self-rated health status 34% 32% 31% 33% 27% 

Self-rated health status comparison   23% 28% 34% 18% 29% 

Smoking 51% 50% 54% 44% 53% 

Physical activity 37% 37% 44% 44% 53% 

Timed get up and go test 48% 50% 52% 52% 52% 

Gait speed (4m) 35% 31% 37% 46% 41% 
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MoCA score 47% 41% 56% 70% 53% 

Self-rated anxiety 51% 41% 47% 52% 44% 

Visits / social interactions per week 35% 26% 44% 29% 34% 

Telephone calls per week 29% 29% 30% 29% 31% 

Leisure activities 52% 53% 55% 42% 55% 

Single foot standing 56% 52% 65% 73% 72% 

Adverse event 55% 61% 58% 62% 61% 

 

 

 

Figure 16:  Plot of devices-breakdown approach balanced accuracies 

The breakdown of the FrailSafe components reveals the predictive strength of 
specific devices with regards to particular clinical scores, e.g. the MoCA score is 
predicted with balanced accuracy 70% by the features of the text classifier. On the 
other side, the fusion is not likely to inherit the highest classification accuracy of a 
specific classifier that works correctly for a specific variable. Nevertheless, there are 
two paradigms that break this rule, with the fusion model appearing to achieve the 
highest balanced accuracy for the leisure club participation score, as well as in the 
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case of single foot standing.  The results of this analysis point out to the fact that not 
enough timepoints are provided in order for the devices to be able to serve as a 
prediction machine for the clinical scores. We examine the validity of this 
assumption in the next section. 

3.5.4 Mapping multiple FrailSafe samples into a delta-space 

The original dataset could be manipulated as a set of deltas between different 
timepoints that recordings have been acquired by each device. Such a dataset 
inherently contains as many samples as the number of subjects, so that a sample 
represents the overall change that has been observed during the collection of 
several recordings. To be more precise, the size of this reduced data collection is 
equal to 67 distinct rows (subjects/samples) and 143 features from all devices (the 
number of features is the same as before). Since the separate-model-per-device 
approach seemed to perform better, we follow the same scheme here too. Thus, a 
separate Gaussian naïve Bayes classifier is built for each FrailSafe component and a 
fusion of decisions is performed at the end using a random forest classifier. 
Regarding the rules that aim to either exclude or merge classes of variables with very 
few subjects, the corresponding manipulations are depicted in Table 12 and Table 
13.  We evaluate the performance of the prediction scheme using balanced accuracy 
as metric. Results are presented in Table 14 and Figure 17 accordingly. 

 

Table 12: Exclusion of very small classes 

Excluded variables 

Leisure club participation 

Unintentional weight loss 

MNA screening score 

Self-rated quality of life 

 

Table 13: Merging of very small classes 

Variables with merged classes 

Subjective memory complaint MoCA score 

Low physical activity GDS-15 score 

Low grip strength Self-rated anxiety 

Orthostatic hypotension Self-rated pain 

Hearing impairment Visits / social interactions per week 

Vision Impairment Telephone calls per week 

Self-rated health status Time spent on phone per week 
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Table 14: Balanced accuracy of delta-space approach 

Clinical variable GPS  WWSX  Games Text Fusion 

Fried status 44% 41% 45% 50% 46% 

Subjective memory complaint 53% 57% 42% 43% 51% 

Low physical activity 45% 41% 61% 63% 49% 

Low grip strength 67% 50% 70% 57% 64% 

Orthostatic hypotension 58% 36% 56% 45% 45% 

Hearing impairment  60% 61% 47% 63% 48% 

Vision Impairment 55% 75% 40% 35% 49% 

Self-rated health status 42% 54% 50% 64% 55% 

Self-rated health status comparison   37% 57% 43% 44% 48% 

Smoking 50% 50% 50% 17% 50% 

Physical activity 47% 63% 42% 40% 47% 

Timed get up and go test 52% 64% 61% 47% 48% 

Gait speed (4m) 51% 44% 46% 48% 38% 

MoCA score 50% 38% 50% 45% 50% 

GDS-15 score 50% 50% 50% 62% 50% 

Self-rated anxiety 65% 47% 47% 52% 65% 

Self-rated pain 63% 38% 41% 44% 50% 

Visits / social interactions per week 56% 75% 47% 47% 51% 

Telephone calls per week 53% 69% 54% 51% 58% 

Time spent on phone per week 63% 57% 59% 51% 54% 

Time spent on videoconference per week 49% 39% 44% 42% 50% 

Written messages sent per week 48% 51% 64% 39% 48% 

Leisure activities 50% 64% 66% 60% 49% 

Self-rated health status comparison  Time spent on videoconference per week 

Smoking Written messages sent per week 

Physical activity Visits / social interactions per week 

Timed get up and go test Leisure activities 

Gait speed (4m)  
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Single foot standing 44% 57% 55% 63% 49% 

Adverse event 60% 37% 66% 50% 54% 

 

 

 

Figure 17: Plot of delta-space approach balanced accuracies 

 

The current model appears to behave in a quite similar way to the aforementioned 
devices-breakdown model, with specific devices being able to predict a subset of the 
clinical scores. For example, the variable Low grip strength is correctly classified by 
the games’ features with accuracy 70%, which makes sense since there is a couple of 
games that are played using a dynamometer, a device that measures the grip 
strength. Nevertheless, the fusion of the classifiers’ decisions is still pure in terms of 
the resulting accuracy.  

3.6 Aggregation of temporal parameters towards prediction of 
adverse events  

In addition to the previous analysis frameworks where we examined the relationship 
between input and target variables for each session, here we focus on adverse 
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events that happen at a specific time point 𝑡. We define the time of the adverse 
event as the end time point and use all previous instances (historical data) to form 
the training set 𝑋𝐻  =  {𝑋1, 𝑋2, … , 𝑋𝑡}. The subsequent instances {𝑋𝑡+1, … } are 
discarded because the measurements might have been affected by the incurrence of 
the adverse event. For example the total daily outdoor walking distance covered by 
an individual after a fall or hospitalization is expected to be significantly smaller and 
not representative of his/her (at that time point) frailty status. If no adverse event 
has happened, all instances are retained. The aim of this analysis is given 𝑋𝐻  to 
predict whether an adverse event will happen (Y=1) or not (Y=0) within a predefined 
time period, such as a year. The idea is to examine whether we can extract early 
indicators of deterioration in the participants’ health condition that might lead to 
dangerous events.  

 

 

 

First we formulated this task as a multiple instance learning (MIL) problem in which 
the temporal alignment of the multiple instances (sessions) was ignored. The 
rational behind this is that (i) the calculated variables are not always consistent due 
to small deficiencies in hardware or software components and (ii) some of the 
variables (e.g. based on questionnaires during the clinical evaluation) are subjective 
and might change in an incoherent way. For example, cases with an apparent 
decrease in frailty level based on Fried score are not few, but the rest of the findings 
do not support this data. By solving this supervised classification problem through 
MIL we allow a predefined fraction of the data to be indicative of the health’s 
deterioration without explicitly fitting a temporal model of transition. 

 

Adverse 
event 

Frailty increase 

excluded from 
training set 
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3.6.1 Methods and Results 

Several MIL algorithms were investigated using the Matlab Toolbox for Multiple 
Instance Learning (mil tools 1.2.0) [33]. The toolbox is an extension of the PRTools 
toolbox, which was used for the book [34] and in which Matlab objects for 
prmapping and prdataset are defined. Among the investigated algorithms were the 
MILBOOSTC, SIMPLE_MIL, miSVM, SPEC_MIL, MILES and sparse logistic regression 
(SPARSELOGLC).  

The MILBOOSTC algorithm is described in [45]. The SIMPLE_MIL algorithm uses a 
standard untrained mapping on a MIL-dataset A. The classifier is trained on all the 
data in A, without considering the fact that they are organized in bags. In the 
evaluation phase, the instances from a bag are classified, and the outputs of all 
instances is combined using a preselected (as input) rule. The method miSVM applies 
Support Vector machines for multiple-instance learning [46]. The SPEC_MIL 
algorithm is a specializing multi-instance learner, that follows a generalization of the 
miSVM [46]. It first trains a classifier on all the data and then relabels all data 
according to the output of this classifier. Then it checks that at least one instance in 
the positive bags is labeled positive, and if not, it changes the least negative instance 
to a have a positive label. This is iterated a predefined number times, or until the 
labels do not change anymore. MILES [47] performs multi-instance learning in 
embedded subspaces [47]. Specifically the model is learnt by representing the bags 
based on the maximum kernel similarity (quantified using proximity mapping) to all 
other instances. On this dissimilarity representation a sparse linear classifier is 
trained. For SPARSELOGLC a sparse logistic classifier (implemented by the SLEP 
package) optimizes the logistic loss on the training set, regularized by the 𝐿1 norm of 
the weights [48]. 

A grid search on the most crucial parameters was performed for each classifier. The 
best results were obtained for SPEC_MIL (with parameter frac=0.325) and are shown 
in Table 15. We also tested the method on the same variables except the ones 
extracted by the analysis of text. The reason for this experiment is that most of the 
participants do not use social media, so the text variables were mostly extracted 
from a test performed during the CGA during which the participants were instructed 
to describe a given illustrated image as well as an important event in their life. This 
procedure (to collect and convert to electronic form the text) is not very trivial, thus 
the additional contribution of these features requires investigation. The results are 
shown in Table 15, 2nd row. It can be observed that the text variables contribute the 
overall accuracy (balanced or unbalanced) but the performance of the classifier in 
respect to AUC is better without the text variables. This might be explained by the 
fact that less variables generally increase robustness also the number of subjects is 
slightly larger (𝑛 = 80 versus 𝑛 = 76 with text) since some subjects that did not 
have all variables were excluded in the joint analysis. 

In order to better assess the FrailSafe system’s potential we compared with standard 
evaluation practices based on the CGA and specifically the Fried status. Specifically, 
we applied the same classification algorithm to predict the occurrence of adverse 
events using only the Fried status as predictor variable or using all clinical variables 

http://www.prtools.org/
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(including Fried) acquired during the common geriatric assessment. The results are 
illustrated in Table 15 (3rd and 4th row, respectively). It can be observed that the FS 
variables have a higher potential in predicting adverse outcomes than the Fried 
status alone or combined with the rest of the clinical metrics. 

 

Table 15. Prediction of hard outcomes by SPEC_MIL 

Features AUC Accuracy Balanced 
Accuracy 

All variables (clinical + FS)  0.70 0.77 0.73 

All variables (clinical + FS) except text 0.74 0.75 0.70 

Fried 0.60 0.72 0.49 

Fried + clinical 0.56 0.69 0.53 

 

4 Conclusions 

In this deliverable, the Decision Support System has been described along with the 
role of inflammation in the pathogenesis of frailty. The DSS includes the clinical state 
prediction engine that aimed at investigating and specifying appropriate 
physiological and behavioral characteristics that can be used for defining biomarkers 
of frailty that can be of a significant predictive value. Cluster analysis helped finding 
groups of data that were in good accordance with the outcome of clinical tests, 
indicating that there is high potential in the proposed monitoring system and data 
analysis framework. Also, classification algorithms have been exploited in order to 
build prediction models for the different clinical metrics as well as to predict adverse 
events. The results encourage further investigation of the prognostic capacity in 
terms of predicting frailty transition and subsequent risk factors. Finally, a risk 
assessment module was developed which is responsible for the generation of alerts.  
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