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Abstract—As the global community becomes more interested in 

improving the quality of life of older people and preventing 

undesired events related to their health status, the development 

of sophisticated devices and analysis algorithms for monitoring 

everyday activities is necessary more than ever. Wearable 

devices lie among the most popular solutions from a hardware 

point of view, while machine learning techniques have shown 

to be very powerful in behavioral monitoring. Nevertheless, 

creating robust models from data collected unobtrusively in 

home environments can be challenging, especially for the 

vulnerable ageing population. Under that premise, we propose 

an activity recognition scheme for older people along with 

heuristic computational solutions to address the challenges due 

to inconsistent measurements in non-standardized 

environments. 

Keywords; Activity Recognition; SVM Classification; 

Wearable devices; ADL  

I.  INTRODUCTION  

A great amount of research work has focused on 
monitoring the physical behavior of ageing population, since 
the concept of frailty has proven to affect older people’s lives 
and health radically. The operational definition of frailty, 
according to [1], refers to a clinical syndrome characterized 
by three or more of the following situations: unintentional 
weight loss, self-reported exhaustion, weak grip strength, 
slow walking speed, and low physical activity. It is 
considered to be a multi-parametric clinical state, in which 
physical, cognitive, or psychological factors seem to be 
affecting the appearance of the syndrome as well as its 
progression. The occurrence of such a syndrome is reflected 
to all aspects of older people’s lives and increases the risk for 
falls, disability, hospitalization, loss of autonomy and 
mortality. Because of its complexity, multi-faced nature and 
not totally clarified pathophysiology, there is a great 
difficulty in defining, early identifying and preventing 
frailty. ICT (Information and Communications Technology) 
technologies tempt to address this unmet need. 

A. Related Work 

Sophisticated methods for the detection of distinct 

physical activities have previously been reported in the 

literature, using a variety of wearable and non-wearable 

sensors. In [2] the authors reported the use of a smart watch 

enclosing three different kinds of sensors, namely 

accelerometer, temperature sensors and altimeter. After 

performing some calibrating actions on the raw signals and 

feature selection, neural network and support vector 

machine (SVM) classifiers were used for classifying the 

activities of the elderly. In [3] an inertial measurement unit 

located near the sternum and a thigh wearable sensor were 

used to detect posture of the elderly with the deployment of 

a rule-based algorithm. A signature extraction methodology 

is proposed in [4] using a smartphone’s accelerometer, 

placed at the subjects’ pelvis and implementing a threshold-

based, or a PCA-based classification algorithm. 

Extraordinary work on activity classification for the elderly 

is reported in [5], where the idea of instrumented shoes able 

to record movement is introduced, for the purpose of 

discriminating postural transitions, locomotion and walking 

activities using decision trees. In [6] the possibility of 

improving ADL (Activities of Daily Living) classification 

accuracy by applying feature ranking and selection is 

explored. Activity recognition was performed in [12] using 

a Hidden Markov Model on recordings from sensors placed 

in the house and on the body, whereas in [13] the aim was to 

identify high falls’ risk related activities of older people 

based on a wearable passive Radio Frequency Identification 

sensor. Analysis was based on data from healthy adult 

volunteers. 

Although many frameworks have been reported in the 

literature for behavioral monitoring of older people, most of 

them have been tested on data from young and healthy 

participants [4][6][13], or the experiments were performed 

on laboratory conditions, e.g. in [12] a scaled model of a 

house was used along with a simulated sequence of 

activities. Those works report high classification accuracy, 

but results are not directly comparable with uncontrolled 
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monitoring systems in real home environments. In contrast 

to the aforementioned studies, our approach is tested on data 

recorded from wearable sensors incorporated in a vest 

designed for monitoring the physiological signals of older 

people. 

B. Challenges in activity recognition using wearable 

sensors 

Moving from laboratory environment to real-life 

experiments, researchers are dealing with numerous 

obstacles that they must overcome, concerning mostly the 

devices used to monitor older people. A first challenge 

appears in case the device is not placed with standard 

orientation, causing rotation of axes. For sensors such as the 

accelerometer, orientation plays a significant role in 

recognizing the subject’s activity. Thus, a misplacement of a 

wearable device could easily disorientate the data analysis.  

Another issue occurs when a different type of sensors is 

used across individuals (e.g. accelerometers with different 

technical characteristics), or the sensors are placed in 

different location at the body. This is possible when data 

from different clinical centers are combined or for example 

after updating hardware and software components, since it 

causes lack of uniformity in the dataset adding barriers on 

inference and modeling. When activity annotations are used 

for model construction (e.g. in supervised learning settings), 

additional challenges come from the inter- and intra-rater 

variability, the rater’s subjectivity and the interactive nature 

in the annotation process, especially when frail individuals 

are instructed and monitored. 

The list of challenges could be real long, but we focus 

on the aforementioned issues since they are likely to occur 

in studies such as the one reported here. Retrospective 

solutions to address these issues during data analysis are 

proposed and discussed in the next section.  

C. Aim of current study 

In this paper we present an ADL classification scheme 

based only on accelerometer for the purpose of detecting 

everyday-life activities of older people and focus on the 

necessary model reconfigurations for resolving challenges 

imposed by inconsistent data. The main contributions of the 

current work are summarized as follows: 

• The classification model is trained and tested on 

older people’s recordings exclusively, in real-life 

conditions. 

• An optimized classification model is selected with 

reduced number of features. 

• Variations of the initial model are proposed to 

address device-relative issues. Specifically, the 

recordings were acquired using two wearable 

devices developed for monitoring older people’s 

physiological signals. 

The remaining of this article is structured as follows: in 

section II the methodology applied to build the classification 

model is described, data acquisition and experimental 

details are reported in section III, while the results of the 

current study and related work are presented in sections IV 

and V correspondingly, followed by the study’s conclusions 

in section VI.  

 

II. MATERIALS AND METHODS 

The main device used to record the physiological signals 

of older people is a wearable solution (vest) that takes its 

origin from a previously developed product of Smartex [7], 

with a further integration of some Inertial Measurement 

Units (IMUs) in order to have information of higher quality 

with regards to movement analysis. Together with data on 

movement, posture and physical activity it also records data 

from the heart and respiration. It has been developed for the 

purpose of long term monitoring of several physiological 

parameters, together with data from some IMUs to be used 

to better classify and parameterize user's movements and 

physical activity, in the context of the European research 

project FrailSafe [8]. 
The classification scheme includes the same steps, as 

reported in [6]:  

• Data acquisition 

• Split in training and test sets 

• Preprocessing 

• Feature extraction 

• Model building with training samples 

• Classification of test samples 

The purpose of the classification procedure is to 

discriminate the following activities: sit/stand, laying, 

walking, walking upstairs/downstairs, transition between 

activities. Only accelerometer-generated recordings are 

selected as data input for classification, although the 

gyroscope and magnetometer recordings could be used as 

well. This decision was made due to the fact that the current 

approach focuses on a minimal use of resources, for 

computational and performance-related reasons. The 

accelerometer has a sampling rate at 25Hz with unit value 

0.97 e10-3g. 

 

A. Preprocessing, Feature extraction, Classification 

The classification scheme is based on previously 

reported work [6]. The preprocessing procedure involves the 

separation of body acceleration from gravity acceleration, as 

reported in [9]. Specifically, the raw 3-axial signals from the 

accelerometer were initially preprocessed using low-pass 

filtering to separate the body and gravity acceleration 

components. The accelerometer Jerk signals were also 

calculated, as well as the magnitude of the tri-axial signals. 

The recordings were then split into fix-width sliding time 

windows and a set of statistical features were calculated for 

each time window. These were a subset of the proposed 

features reported in [9], namely: mean value, standard 

deviation, median absolute deviation, largest value in array, 

smallest value in array, signal magnitude area, energy 
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measure, interquartile range, signal entropy, autoregression 

coefficients, correlation coefficient between two signals, 

index of the frequency component with largest magnitude, 

weighted average of the frequency components to obtain a 

mean frequency, skewness of the frequency domain signal, 

kurtosis of the frequency domain signal and energy of a 

frequency interval within the 64 bins of the FFT of each 

window. The resulting feature vector contained 254 

features.  

Subsequently, the features were normalized, in order to 

avoid skewing the analysis by specific features’ scale. This 

was achieved by applying the widely used z-score 

normalization (standardization), that centers the features at 

zero and scales them to have unit variance. The parameters 

that used to scale the training features, were stored in a data 

structure to be subsequently used for the standardization of 

the test features. 

The normalized feature vectors of the training samples 

were introduced to an SVM classifier. SVMs find the 

hyperplane that discriminates the classes by maximizing the 

margin in between. Once the model is calculated, it can be 

used to classify new instances. To evaluate the model’s 

performance on unknown data, the classification accuracy is 

calculated according to the test samples’ labels.  

B. Reducing differences across devices 

As discussed previously, performing experiments with 

sensors of slightly different technology, or with a different 

sensor placement prohibits the use of a uniform 

classification model. In particular for the data used in this 

study, we explored whether any differences occurred 

between recordings from the two incorporated devices, by 

asking two young volunteers to perform daily activities 

while simultaneously wearing the two devices used in the 

study placed at the center and laterally of the chest, 

respectively. It was revealed that a scaling difference 

occurred between the two types of measurements. To 

address this issue, we define a reference space and 

normalize all recordings with regards to the reference 

measurements using a baseline correction technique. The 

baseline was defined as the mean value of time segments 

with small standard deviation for each axis. Correction was 

performed by aligning the baseline of each new recording to 

the reference baseline of the corresponding channel. After 

baseline correction, the classification model to be used is 

selected according to the rules identifying errors in sensor’s 

orientation, as described in the next section. 

 

C. Resolving the rotation of axes issue 

To overcome the challenge of axes rotation, we 

investigated the possibility to automatically identify mis-

oriented device’s data and map them back to a reference 

space. Although some heuristic rules helped us to recognize 

mis-orientations in most of the cases, no robust automatic 

technique was found to be always successful. Thus, we 

decided to extract also rotation-invariant-features and build 

a substitute classification model. To achieve this, each 

triplet of features extracted from the three axes, X, Y and Z, 

was reduced to only one feature computed as the mean of 

the three axes’ corresponding features. These features are 

insensitive to the orientation, and thus misplacement, of 

sensors. 

Although the rotation-invariant features are preferable in 

the case of inconsistent data, they are expected to have 

lower predictive value, because some activities, such as 

walking, are strongly related to a particular axis. Therefore, 

it would not be the best practice to replace the detailed 

model by the less complex one overall. Accordingly, we had 

to deal with the problem of automatically recognizing 

whether the wearable device had been misplaced or not and 

select the corresponding model. The problem was addressed 

by learning the distribution of measurements in the 

reference space (correct orientation) defined by the training 

set. A two-steps heuristic approach was introduced for that 

purpose. The first rule determines whether the vertical axis 

(axis X), which is the most prominent axis due to gravity, 

coincides with the one used during training. This was 

achieved by outlier detection assuming that the largest 

amount of measurements (80th percentile) of test and 

reference data should be in the same range. If so, then the 

axis-dependent model is selected for classification, 

otherwise the second rule is examined.  

The 2nd rule is used to examine more thoroughly cases in 

which the signal has a shifted baseline value, therefore 

might fall outside the predefined range. The signature for 

the recording is based in this case on the overall distribution 

of measurements along all three axes and specifically on the 

3D histogram of raw values (within ~1-hour interval). 

Outlier detection is performed by computing the pairwise 

distance between the test signal and each of the reference 

signals (from the training subjects). If the minimum distance 

is smaller than a threshold (θ), the axis-dependent model is 

selected, otherwise classification is based on the axis-

invariant scheme. The threshold θ was determined by 

examining the normal variation, i.e. it was equal to the 

maximum within-training-subjects’ distance. The chosen 

distance metric was a 3-D version of the Kolmogorov-

Smirov distance [14].  

 

D. Enforcing temporal coherency of activities  

In order for the classification results to be physically 

probable, we made the assumption that the minimum 

duration of an activity could not be less than a threshold. 

This assumption was made to ensure that the predictions 

describe coherent transitions between activities. To that end, 

we “smoothed” the activity signal using a moving majority 

voting filter of size equal to the predefined minimum 

duration of each activity. We used a value of 4 sec for the 

older people.  
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A schematic representation of the complete 

methodology is illustrated in Fig. 1.  

 

 
Figure 1: Pipeline of activity recognition methodology 

III. EXPERIMENTAL PROCEDURE 

A. Data acquisition and annotation 

The recordings were obtained by twenty subjects (17 
females and 3 males; age: 70-92 years) who participated in 
the FrailSafe project [8]. Considering their health condition, 
they were categorized according to Fried’s criteria [1], 
resulting in 10 non-frail and 10 pre-frail subjects. All 
participants were instructed to perform a set of activities 
while wearing one of the two devices. The protocol was 
performed in clinical centers of three different countries, and 
included the following actions: 

• Standing for 1 minute 

• Sitting for 1 minute 

• Walking for 1 minute 

• Walking upstairs for 30 seconds 

• Walking downstairs for 30 seconds 

• Laying for 30 seconds 
 

Upstairs and downstairs walking was only performed if stairs 
were accessible by the subjects in their residence. Times 
were recorded by the medical instructors while the 
participants performed the ADL protocol. The annotations of 
8 subjects were used to train the classifiers, while the rest of 
the subjects were left for testing. Four-fold cross-validation 
on the training set was used to optimize the parameters for 
both classification models. The recordings of the subjects 
selected for training had the same orientation, which was 
used as reference space (with -X denoting the vertical axis). 

An example of the raw acceleration signals during different 
activities is illustrated in Fig. 2. 

 
 

 
 

Figure 2: Acceleration signals while performing ADLs 

 

Although six activity classes were initially defined, the 

classes sitting and standing were merged into one class, as 

well as walking upstairs and walking downstairs. This was 

performed based on previously reported work that suggests 

that these classes are not easily separable [6]. Additionally, 

the time windows corresponding to the first five seconds of 

the beginning of each activity, were automatically annotated 

as “transition state”, to indicate the time required to switch 

between two different activities. To that end, the final 

classes were: sitting/standing, laying, walking, walking 

upstairs/downstairs, transition state. The number of 

samples that corresponded to each class was different. To 

deal with the imbalanced classes, we used weights (inverse 

proportional to the class size) in the classification function. 

B. Implementation details 

A SVM classifier with radial basis function (rbf) kernel 

from the LIBSVM library [10] was used to train the 

orientation-sensitive as well as the rotation-invariant 

classification models. Grid search on parameters C and 

gamma of the rbf kernel was performed, in order to achieve 

optimum cross-validation accuracy on the training set.  

Furthermore, dimensionality reduction and removal of 

irrelevant features was performed using the Relief-F 

algorithm [11], since this algorithm is widely known to 

perform well on multiclass problems. The best cross-

validation accuracy was achieved using only the 10 higher 

ranked features (out of the initial 254 features). In the case 

of the rotation-invariant model, a total of 40 out of initially 

90 features were selected using the same feature selection 

technique.  
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IV. RESULTS  

Feature selection before classification revealed the most 

important variables. We observed that features from the Y-

axis did not contribute to the final classification model. 

The standard classification model achieved 89.46% 

cross-validation accuracy (computed as the number of 

correctly classified instances to the total number of 

instances on each fold and averaging across folds). The 

model was then applied to 8 test subjects from different 

clinical centers and whose data were acquired by placing the 

sensors according to the reference orientation. The 

classification accuracy of the independent test set reached 

81.7%. The mean confusion matrix is illustrated in Table II. 
TABLE I: MEAN CONFUSION MATRIX 

A
c
tu

a
l 

Predicted 

Classes Sit/Stand Laying Walking 
Walking 

up/down 
Transition 

Sit/Stand 96.08 0 0.76 0 3.16 

Laying 0 86.75 1.65 0 11.60 

Walking 8.26 0 74.33 1,56 15.85 

Walking 

up/down 

0 0 100 0 0 

Transition 36.07 2.73 18.03 0 43.17 

 

It appears that sit/stand is the most easily predictable 

activity by the model, since it is correctly classified in 

almost all cases. The walking up/down class has zeros 

everywhere, since there were no test subjects with 

annotations on this class (to be precise, only one subject had 

performed this activity, and it was decided to include it in 

the training set). Class walking has some false negatives 

identified mostly as transition between activities, which is 

not surprising since a transition state is not a class with a 

standard pattern. Similarly, the class transition is intermixed 

with all other classes. This might be also attributed to 

imperfect annotations of the transition samples, extracted 

within constant time windows (located at the beginning of 

each activity) without any visual inspection or 

individualized correction.  

The rotation-invariant model reached 75.56% cross-

validation accuracy. For the evaluation phase we used 

recordings of 8 test subjects, two of which had rotated axes, 

while the rest six were manually rotated in several ways, in 

order to assess the model’s performance. The mean 

classification accuracy of these subjects was 70.31%. To 

better interpret the models’ performance, we juxtapose the 

classification accuracy of the rotated subjects’ recordings 

when applying the orientation sensitive model, with the 

accuracy of the surrogate model. The results are depicted in 

Table III. It is evident that the surrogate model boosts the 

accuracy significantly, thus being effective in addressing the 

rotation of axes issue. 

 
TABLE II: MODELS' PERFORMANCE IN CASE OF AXES ROTATION 

Subject 

Classification Accuracy % 

Increased by % Orientation 

sensitive model 

Surrogate 

model 

1 19.43 60.19 40.76 

2 19.60 60.40 40.80 

3 23.08 72.60 49.52 

4 29.84 78.01 48.17 

5 25.27 64.52 39.25 

6 7.03 69.17 62.14 

7 7.19 87.05 79.86 

8 25.37 78.54 53.17 

 

Regarding the evaluation of the baseline correction 

approach for data acquired by different devices, we used 

recordings acquired with the older device from 4 volunteers 

(2 young and 2 elderly) and evaluated the classification. The 

mean accuracy was initially 37.5% with the orientation 

sensitive model (trained with data from the newer device), 

while after performing baseline correction it was increased 

to 61.7%. 

Finally, we assessed the overall accuracy of the end-to-

end pipeline on 12 test subjects (not used during training) 

whose recordings were acquired by wearing either of the 

two devices in real settings, i.e. with the sensors placed 

correctly or rotated, and by letting the algorithm decide 

which model to use. The average accuracy was 71.8%. 

V. DISCUSSION 

A direct comparison with other studies is not feasible due 

to differences in the experimental setup including the type 

of activity, as well as the use of different classification 

performance metrics. Nevertheless, the different approaches 

reported in this paper are compared in Table IV, in respect 

to incorporated sensors, classification technique, and 

performance.  

 
TABLE III: COMPARISON WITH OTHER STUDIES 

Study Sensor Method 
Evaluation 

metric 
Performance 

Proposed 
IMU at 
sternum 

SVM Accuracy 81.7% 

[2] 
Smart watch, 

accelerometer 
NNs, SVM Accuracy 90.23% 

[3] 
IMU at 

sternum and 

thigh sensor 

Rule-based 
ROC 

analysis 
97.2% 

[4] Smartphone 
Threshold 

& PCA 

Sensitivity/

Specificity 
per class 

PCA high 

specificity and 
sensitivity 

[5] 
Instrumented 

shoes 

Decision 

Tree 
Accuracy 97.41% 

 
Other works report higher accuracy than the current work, 
but there can be many reasons for it. First of all, most studies 
use data from younger participants, selected to be in good 
physical health. This results to a more homogeneous group 
and allows the collection of a larger number of samples. 
Since our work is targeted to the ageing population, 
functional status and age variability are confounding factors 
when building a monitoring system for older people. Second, 
we use a single sensor (accelerometer) in a single location, 
whereas the combination of more sensors could affect the 
classification performance, especially if located in different 
parts of the body. Third, the data of this study were acquired 
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from everyday life in home environments whereas most of 
the studies report accuracies in controlled, simulated or 
laboratory settings. 
Finally and more importantly, the reported performance is 
not always calculated with respect to an independent test set, 
but may refer to accuracy of subject-specific models (where 
train and test samples come from the same subject) [6]. 

VI. CONCLUSIONS 

The current study aimed at developing an activity 
recognition scheme for the ageing population with respect to 
real-life challenges arising from device-generated or human-
related parameters. Data from older participants with 
different levels of frailty or functional conditions were used 
to train and test an end-to-end modeling framework 
developed to address those challenges Promising results 
support the use of the proposed activity recognition scheme 
for unobtrusive monitoring of older people. 
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