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Multidimensional data that occur in a variety of applications in clinical diagnostics and health care can naturally be
represented by multidimensional arrays (i.e., tensors). Tensor decompositions offer valuable and powerful tools for latent
concept discovery that can handle effectively missing values and noise. We propose a seamless, application-independent feature
extraction and multiple-instance (MI) classification method, which represents the raw multidimensional, possibly incomplete,
data by means of learning a high-order dictionary. The effectiveness of the proposed method is demonstrated in two application
scenarios: (i) prediction of frailty in older people using multisensor recordings and (ii) breast cancer classification based on
histopathology images. The proposed method outperforms or is comparable to the state-of-the-art multiple-instance learning

classifiers highlighting its potential for computer-assisted diagnosis and health care support.

1. Introduction

Nowadays, data tend to be large in volume and multipara-
metric in nature, especially in clinical diagnostics and health
care. Applications that provide massive multidimensional
data are vast. Some examples include monitoring patients
by multisensor technologies [1, 2], noninvasive lesion detec-
tion and diagnosis using hyperspectral sampling [3], cancer
diagnosis based on tissue microarray data [4, 5], color segmen-
tation of skin lesions using histology-stained microscopic
images [4, 5], classification of EEG signals for seizure detection
[6], or for Alzheimer’s disease analysis [7]. The main challenge
is to extract discriminative features from high-dimensional
data in a way that preserves their multidimensional structure
while at the same time models the interdimensions’ interac-
tion. Traditional matrix representation techniques that repre-
sent high-dimensional data by flattening them to a matrix
suffer many times from the curse of dimensionality that poses
limitations on many two-dimensional approaches. By repre-
senting such data in a more natural way by multidimensional
arrays (a.k.a. tensors) and using sophisticated high-order
techniques, such as tensor decompositions, we can capture

multiple interactions and couplings and simultaneously
discover latent concepts that are present in the data [8].
Tensor-based techniques have been employed in the field
of signal processing and machine learning for a variety of
tasks [9] like in blind multiuser code-division multiple access
(CDMA) communications, blind source separation, collabo-
rative filtering-based recommender systems, Gaussian mix-
ture parameter estimation, topic modeling, or, as mostly
related to our work, multilinear discriminative subspace
learning [10, 11], among many others. For an extensive over-
view of the underlying tensor theory and the aforementioned
applications, we refer to the extensive review paper [9].
Tensor decomposition has also been applied recently for
image restoration by grouping image patches [12] or for
image compression and reconstruction [13, 14] by removing
redundancy simultaneously in spatial and spectral domain.
In contrast to multichannel signal or image data encoding that
often benefits from tensor decomposition due to their struc-
tured nature, encoding of 3D geometrical meshes rather relies
on traditional techniques, such as graph Fourier Transform
[15]. A common aspect in most of the applications is the
exploitation of sparsity in high-order structures. An overview
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of some basic techniques that exploit sparsity in the recovery
oflow-rank higher-order tensors, followed by related applica-
tions, is provided in [16].

The second challenge in the analysis of current biomedi-
cal data comes in the learning phase that follows the data rep-
resentation phase. Standard supervised learning implies that
each example used for training a classification model, is rep-
resented as a feature vector with an associate class label
attached. However, in many real-life applications, data tend
to be complex, incorporating different concepts, and thus it
is difficult to model each example as a single feature vector:
e.g., medical images depicting different tissue types, bio-
signals tracking different activities, or molecules with confor-
mations with different chemical properties. In these cases, a
more efficient representation, which preserves as much infor-
mation as possible, consists of a collection of feature vectors
(denoted as instances), such as patches of an image, time
windows of biosignals, or conformations of a molecule, each
one covering a different aspect of the whole object. The chal-
lenge that arises for such representations is the lack of refined
annotation for each individual feature vector, known as
multiple-instance learning (MIL). Furthermore, some of the
feature vectors describing an observation could provide none
or sometimes even misleading information about the object’s
class (e.g., not all cells are malignant in a histopathology
image with malignancy).

Besides the challenges inherited by the high-order struc-
ture and multivariate context, data partiality or incomplete-
ness impose an additional burden. Missing data occur in
real-life due to a variety of reasons including failure in the
data acquisition processes (e.g., temporary malfunction of
EEG electrodes [17]), costly experiments impeding the anno-
tation of all samples, or due to noise or artifacts removal. In
supervised learning paradigms, missing values must be
removed from the data or imputed by statistical approaches
[18] prior to inference. Another interesting approach when
classifying data with missing values is based on the assump-
tion that data are of low rank [19, 20], that there exist proto-
types (i.e, components) and all the samples can be
reconstructed by a mixture of them. For example in [19],
the classification problem is treated as a matrix completion
problem via rank minimization, while in [20], classification
is performed using the low-rank assumption without any
matrix completion step. For high-dimensional settings,
dissimilarity-based classification is proposed in [21] where
missing values are estimated via high-order decomposition
and then classification is performed on the completed data.

The aim of this work is to define a generalized tensor-based
multiple-instance learning framework (called TensMIL)
for analyzing high-order, possibly incomplete data, avoiding
the extraction of predefined or hand-crafted features. Our
approach is formulated as a multistep minimization problem
in which all parameters, internal and external, are learnt by
supervision. In order to illustrate the wide applicability of
TensMIL, we assess it in two distinct scenarios for multiple-
instance classification using biomedical images and multi-
channel biosignals, respectively, and compare it against other
state-of-the-art techniques. In order to place the method into
the MIL context and better appreciate its differences from
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other approaches, we first provide a small overview of the
related work in MIL and then proceed with more details
and contributions of TensMIL.

In multiple-instance learning problems, bags (subjects)
are described by multiple-feature arrays (instances) and
labels are provided only for the bags, whereas the labels of
the individual instances are unknown. Several methods have
been proposed exploiting local or global information and
implementing different classifiers or mapping functions.
For a complete taxonomy on MIL algorithms, we refer to
the work of Amores [22], as well as previous reviews by
Foulds and Frank [23] or Dong [24]. At the first level of the
taxonomy tree, the classification frameworks follow either
the Instance Space (IS), Bag Space (BS), or Embedded Space
(ES) paradigm.

The inference process for the methods in the IS paradigm
is based on information that resides in the individual
instances, i.e., an instance-level classifier is trained to separate
the instances in positive or negative class. The obtained
instance-level scores are then aggregated to summarize the
information about the whole bag, usually based on one of
the two assumptions [22, 23]: the standard MI assumption
that states that every positive bag contains at least one posi-
tive instance and the collective (or weighted collective)
assumption in which all instances in a bag contribute equally
(or according to weights) to the bag’s label [25]. The selected
aggregation rule thus acts as a bag-level classifier. Although
the assumption-based IS paradigm proves to be an effective
heuristic in many application domains, very often, the rela-
tionship between instances in a bag and the bag-level class
labels is unknown; therefore, the use of concepts was intro-
duced to relax the strict view of predefined assumptions. A
more refined hierarchy of assumptions was defined by
Weidmann et al. [26] and presented by increasing generality
from the standard MI (for a single concept), to the presence-
based (for multiple concepts), threshold-based, and count-
based assumption.

In contrast to the IS paradigm, where the (bag-level)
classifier is obtained as an aggregation of local responses,
the inference process of the methods in the BS and ES para-
digms is performed in the space of bags. BS methods directly
employ a distance or kernel function that operates on non-
vectorial entities, such as the bags, in order to assess similar-
ity between them. Since our proposed method relates less to
this category of methods, we omit further discussion, but
refer to [22] for additional details. In the ES paradigm, a set
of concepts are identified by unsupervised learning and used
as a vocabulary that describes classes of instances. A mapping
function is then employed to map each bag into a feature
vector v which aggregates the pertinent information about
the bag. In the special case of histogram-based ES methods,
the vector v describes the distribution (histogram) of the
instances into the different classes of the vocabulary. The
few ES methods that are not based on vocabularies or
concepts’ learning usually summarize statistics (for example,
the minimum and maximum values) of the features of all the
instances inside the bag. Another interesting approach is
associating the bags with their most informative instances
via instance selection. In this way, the bag space is mapped
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to a reduced instance space, where IS classifiers or even
classic non-MIL classifiers can be exploited. Recently a new
multiple-instance learning algorithm with discriminative
bag mapping (MILDM) [27] has been proposed, where
informative instances are selected such that the bags are
maximally distinguishable in the new mapping space.

In this paper, we propose a seamless method for feature
extraction and MIL classification of high-dimensional data
by modeling the data as n-dimensional arrays (i.e., tensors).
Through tensor decomposition, we construct a high-
dimensional dictionary that models the latent factors of the
data as a number of n — 1 dimensional rank-1 constructs. In
this way, the coefficients that correspond to the instances’
mode indicate the contribution of each latent factor to the
representation of the corresponding instance, and thus they
can serve as instance-level features. Subsequently, using these
features, we train an instance-level classifier for predicting
the hidden class label of each instance by a continuous score.
We model each bag by the density function of the predicted
labels and train a bag space classifier for the final classifica-
tion task. Our motivation was to avoid strict predefined
MIL rules, such as the standard MIL assumption; therefore,
we extended the collective assumption, by learning the bag
labels using the probability density function of the estimated
hidden instances’ labels.

The main contributions of our work are summarized
as follows:

(1) TensMIL is based on a generalized feature extraction
method for high-dimensional data using tensor
decomposition, thus can be applied in multiple
scenarios

(2) It performs well even with a very small number
(e.g., 10%) of observed data

(3) Evaluation in the UCSB Breast Cancer benchmark
dataset with full and with partial observed values
showed that it outperforms or is comparable to exist-
ing state-of-the-art MIL algorithms

(4) To the best of our knowledge, we are the first to exploit
the potential of physiological (such as respiratory and
cardiac) signals in predicting aging-associated decline
(frailty). The application of TensMIL revealed prog-
nostic capabilities for frailty manifestation that previ-
ous methods failed to uncover

2. Materials and Methods

The proposed methodology is illustrated in the simplified
schematic diagram in Figure 1 and consists mainly of three
phases: (i) the data representation and feature extraction
phase in which the data are mapped from the original high-
dimensional space to a lower dimensional space using tensor
decomposition, (ii) the multiple-instance learning phase in
which sequential discriminative models are inferred to clas-
sify the data into different groups, and (iii) the optimization
phase that is coupled with the previous phase for learning
the hyperparameters. In the next sections, we describe
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FIGURE 1: Schematic diagram of the proposed methodology.

analytically every phase starting from the use of tensor
decomposition for feature extraction and proceeding with
our proposed MIL framework.

The notation that we follow within this manuscript is as
follows. We denote tensors by capital boldface Euler letters
(X, Y, Z), matrices by capital boldface letters (A, B, C),
vectors by boldface lowercase letters (a, b, ), and scalars by
lowercase letters (a, b, ¢). Entries of a matrix or a tensor are
denoted by lowercase letters with subscripts (e.g., the
(i}, 1y, ..., 1,) entry of an n-way tensor & is denoted by
X; i,....i,)- Columns of a matrix are denoted by a boldface
capital letter with a subscript consisting of a star and a
number (e.g., A, ; denotes the first column of matrix A).

2.1. Tensor Decomposition. We briefly outline the CANDE-
COMP/PARAFAC (CP) decomposition, a powerful tool
originally introduced in [28, 29]. For preliminaries on ten-
sors, we refer to the Supplementary Material (available here).
Without loss of generality and for the sake of simplicity from
now and on, we will refer to 3rd order tensors, although the
proposed method can be generalized for high-order tensors.
Let & be a 3-way tensor of size Ix]x K. With full
data, a tensor & can be decomposed into a set of
matrices U, V,and W of sizes I x R, ] X R, K x R, respectively,
as follows:

R
X =~ ZU*,T oV*,r DW*

r=1

(1)

where R is the rank of the decomposition and “*” denotes the
outer product of two arrays.

Let Q) be the set of the observed indices of tensor L. We
can define an indicator tensor 77" having the same size as the
original tensor such that # (i, j, k) =1, V(i,j, k) € Q, and
zero elsewhere. The tensor decomposition problem can then
be formulated as follows:

2

()

F

mmU)V‘w

R
We (‘Er - Z U*,r ° V*,r ° W*,r)
r=1

where the “®” denotes the Hadamard (element-wise) prod-
uct. When Q) is equal to the set of indices of &', then we have
a full- (nonmissing) value decomposition problem; other-
wise, we have a decomposition problem with missing values.



For calculating the CP decomposition, we exploit the
well-known Alternating Least Squares (ALS) method [30]
when we deal with a full-value problem, and the two Proxi-
mal methods proposed in [31] when we deal with missing
value problems. The methods proposed in [31]—Gen-
ProxSGD (nondistributed) and StrProxSGD (distributed,
suitable for big data)—tackle the optimization problem in
(2) by solving local minimization problems rather than solv-
ing the entire problem at once.

2.2. Generalized Feature Extraction. We propose here a gen-
eral method for extracting instance-based features from raw
data in which data are represented as an n-
dimensional tensor & € RI*>**I» The representation of
the data is problem-specific, and we will discuss in a later sec-
tion the representation of data for the two different problems
that we tackle. Our objective is to calculate the latent factors
of data via the CP decomposition of the raw data tensor,
where instances are arranged in one dimension. The obtained
factor matrix (the one corresponding to the instances) can be
used as feature matrix in the instances’ space. The other fac-
tor matrices correspond to the calculated high-order
dictionary.

Formally, if & € R™/*K(instances are arranged across
the first dimension), we can write slice-wise a rank-R CP
decomposition of & presented in (1) as

M=

x uir(V*r ° W*r)’ (3)

[

‘
Il
—

where &, , represents a mode-1 slice of the tensor that
corresponds to the ith instance. Equation (3) denotes that
each instance can be approximated as a linear combina-
tion of R two-dimensional components, V. oW, €
RK which correspond to the latent factors of the data.
Thus, we can choose as features representing an instance
i, the R coefficients u,,, r=1,2,...,R, that correspond to
the ith row of factor matrix U in (2). Furthermore, we
can see the latent factors V, oW,  as a high-order dic-
tionary describing the data. This procedure can be
employed as is to tensors of order N > 3 yielding dictionar-
ies of order N — 1 and is independent of the nature of the data
per se.

2.3. Alternative Feature Extraction for New (Unseen) Data.
The tensor-based feature extraction process in the proposed
framework involves the decomposition of a common tensor
constructed by the concatenation of training and testing
samples, as described above. For reducing the computational
cost, it might be desired to classify new testing data without
repeating the whole tensor decomposition. We describe next
an alternative approach to obtaining the low-dimensional
feature representation in which a PARAFAC model is
constructed only from the training data while the test data
are represented by the estimated training model as follows.
If Looin = Y, U, , 0V, 0 W, , is a PARAFAC decomposi-
tion of rank R calculated for the training set and &', is
the tensor of test data, then it can be shown [30] that the
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PARAFAC calculation problem of (2) can be written in a
mode-1 matricized form as

2

Xtrain(l) - U(W < V)T (4)

min UV,W ‘
Fr

We can formulate and solve a least squares minimization
problem to find the “closest” representation of the test set
based on the calculated dictionary of U and W:

2
. & T
mlni]HXtestm -U(WoV)

(5)

Fr

It is easy to show [30] that the solution of
the problem of (5) has the following closed form
U=X,qy(WoV)(W'WeVTV)',  where “t” is the
Moore-Penrose pseudoinverse.

In the following, we describe the next phase of the meth-
odology that involves the construction of the discriminative
model by multiple-instance learning.

2.4. Problem Statement in Multiple-Instance Learning (MIL).
We first briefly define formally the multiple-instance learn-
ing problem. A bag B; = {x;,x;,, ..., X;,, } is a set of n; fea-
ture vectors describing a subject. Let us denote
B={B,,i=1,2,...,n} as the set of all the bags. The cardinal-
ity of each bag B; can vary across the bags. Each feature vector
x;;» where the first index refers to the corresponding bag
and the second index to the feature of the bag it belongs
to, is called an instance. All instances x;;, i=1,2,...,n,
and j=1,2,...,n; live in a d-dimensional feature space
(x; € RY), called instance space. Each bag comes with a
label attached to it Y, e % ={1,...,C}, i=1,2,...,n, with
C=2 defining a binary classification problem and C>2
defining a C class classification problem. % denotes the
set of all bag class labels.

The objective of a MIL problem is given a collection of n
bags (subjects) with their appropriate labels {(B;, Y;),i=1,
2,...,n} to learn a model that can predict the labels of new
observations (bags).

2.5. Our MIL Framework (TensMIL). The proposed MIL
framework follows the IS paradigm in which an
instance-level classifier f(x) is first constructed based on
the label inheritance rule (i.e., all instances of a bag inherit
the label of the bag). In order to make learning computa-
tionally feasible, it is generally necessary to reduce the
hypothesis space by enforcing some MI assumption. How-
ever, in contrast to the classical IS-based methods that
directly combine the instance-level responses through
some predefined rule, we increase the generality and try
to infer those assumptions based on the training set. Spe-
cifically, we extract the histogram of all instance-level
responses within each bag and learn the distribution of
those histograms from the training set. The instance-label
responses refer to the output of the instance-level classifier
f(x) and are analogous to class prediction scores for each
instance. The histogram extraction of the instance-level
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responses corresponds to quantizing the responses within
predefined bins that can be considered as clusters of low,
medium, or high class-likeness. In that sense, our frame-
work relates also to the ES methods without vocabularies
with the difference that the representation is not based
on the original (multiple) attributes of the instances, but
on the instance-level responses (output of the first classi-
fier). Our contribution lies in the fact that we do not rely
on a few statistics, like the average, minimum, or maxi-
mum values, but incorporate a richer representation such
as the histogram.

In mathematical terms, we formulate (similarly to previ-
ous work [32]) an optimization problem that we solve based
on the following steps:

(i) First, the instance-level responses within each bag
are estimated based on a function f(+|6;) that
assigns a class prediction score (such as an abnor-
mality score) to each instance in the bag given a set
of parameters Gf (6), by initializing the unknown
instance labels with the corresponding class label,
Le,y;; =Y,V

éf =arg ming Z Z l(f(xi,j|6f),yi,j>, (6)

i=1 j=1

where [ : R x R — R* is a loss function defined over
the instance space. Upon estimation of éf, the func-
tion f will provide the predictions for the instance-
level class labels, which is in contrast to the work
in [32], where the unknown instance-level class
labels are considered as optimization variables and
are calculated in an iterative manner

(i) Then, a mapping function #(«|0},) is applied from
the instance space to the bag space and the mapped
features are used as the new bag representation B
(7). In the proposed method, this mapping corre-
sponds to the calculation of the density function of
the class prediction scores and is obtained by histo-
gram extraction:

B, = {%(f(x,.,j‘éf) |9H); x,; eB,}. 7)

(ili) Finally, the classification function F(e|0y) for the
whole bag is calculated by supervised learning as
shown in the following equations:

0 =arg ming, ZL(F(ﬁi\GF), Y,), (8)

i=1

Y= F(B,

0:), ©)

where L: RxR — R* is a loss function defined
over the bag space

More details on the individual steps are provided in the
following sections.

2.5.1. Robust Estimation of the Instances’ Hidden Labels. The
medical applications usually concern classification problems
of ordinal data, where the classes have a natural order, such
as the grade of a tumor or the performance score in a clinical
test. If class labels are used, they can be considered as a discrete
approximation of the continuous score (e.g., malignancy);
thus, the same techniques can be applied for discrete or
continuous output variables. The binary classification is a
special case of this problem, where the two classes lie on
the two extremes (minimum and maximum) of the clinical
score range.

In the first step (6), we use the squared error as loss func-
tion and train a full quadratic regression model (containing
an intercept, linear terms, interactions, and squared terms)
f:R?Y >R in the instance space that predicts the hidden
class labels y;; for each instance. The quadratic regression

model can be expressed as

d d
fx)= Z z O XiXm + ino (10)

where the parameters 6y, collectively form the vector 6 in

(6), and d is the dimensionality of x employed in the regres-
sion. Since there is no available information about the
instances’ hidden class labels, the regression model is trained
by using values for the dependent variable, the class labels of
the corresponding bags, this means that y;; =Y, Vj=1,...,

n;. Upon the calculation of f, which is common for all bags,
we can estimate the instance labels as , ; = f(x; ;).

Since not all the instances of a bag i will belong to the
bag’s class Y, some of the instances will behave as outliers
and will not fit well to the respective class. To eliminate
the effect of such inconsistent data, we employ robust qua-
dratic regression which uses iteratively reweighted least
squares with a weighting function [33]. We used the logistic
weighting function:

_ tan h(ry) B resid, k=12 J

> rk -
Tk (tune*s* V1- hk)

Wy

(11)

where resid is the vector of residuals of the previous itera-
tion, s is an estimate of the standard deviation of the error
term given by the median absolute deviation of the residuals
from their mean scaled by a constant z, h is the vector of the
leverage values from least-squared fit, and tune is a tuning
parameter. For the experiments of this paper, we used
the default values for the aforementioned parameters:
z=0.6745 and tune=1.205. The choice of the constant
z makes the estimate of the standard deviation of the error
term unbiased for normal distributions. Furthermore, the
choice of the above default values gives coefficient estimates
that are approximately 95% as statistically efficient as the
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F1GURE 2: The architecture of TensMIL, where U is the feature matrix extracted from the raw data by PARAFAC decomposition, T is the score
matrix obtained by performing PCA on U, A is the matrix containing the bag-level features, (') is the full quadratic regression model, and

F(') is the QDA classifier.

ordinary least squares estimates, provided that the response
has a normal distribution with no outliers. By employing
the above weighting function, the misclassification penalty
for the instances that do not belong to the bag’s class is
reduced, obtaining thus a robust estimation of the hidden
labels of the instances. Finally, we want to mention that we
experimented with different weighting functions and differ-
ent tuning parameters and we empirically concluded to use
the aforementioned logistic weighting function with the
default tuning settings since it yielded better results.

2.5.2. QDA-Based Bag Classification. In order to obtain the
bag representation (7) and subsequent bag classification
((8) and (9)), we treat the extracted attributes in target
bags (i.e., the instance-level class predictions per bag) as
random variables that are defined over a space of proba-
bility distributions. We then approximate the density func-
tions Z;({f(x;;),j=1,2,...,n;}),i=1,2,...,n, of the class
label scores for each bag by histogram extraction using 0y,
equally sized bins. Having estimated the histograms for all
bags in the training set H={%,,i=1,2, ..., n}, we can train
a bag-wise classifier that will learn to discriminate the
unknown class Y. Assuming that the observations from
each class k,k=1,2,...,C are drawn from a multivariate
Gaussian distribution 7 ~ N(p, %) and that each class
has its own covariance matrix (£;), we can use the qua-
dratic discriminant analysis (QDA) classifier [34] to find a
nonlinear quadratic decision boundary. The QDA classifier
F:B— Y assigns an observation to the class with the
maximum discriminant score Y; = argmax, 8, (h;):

1 1
8(p) == (P =) " T(p — ) +log m = 5 log %y, (12)

where 8, is the discriminant function over the bag space,
is the mean vector of all the training observations from the
kth class, X is the covariance matrix for the kth class, and
7}, is the prior probability of an observation belonging to the k
th class. The parameters (y,, %) of the discriminant functions
are learnt from the training set and subsequently used in the
testing phase to predict the class labels for new bags.

2.6. Implementation Details and Summary of TensMIL
Architecture. In this section, we summarize the individual
steps of the method, starting from the raw multidimensional
data, and illustrate them in Figure 2 highlighting the differ-
ences between training and testing phase.

In the first phase, data must be arranged in a tensor of
order N >3, with the first dimension dedicated to the
instances. The tensor can be constructed by placing instances
of each bag B, B,, ..., B, in a sequential order, but this is
only for convenience. Training and test data can be placed
in the same tensor, constructing a high-dimensional tensor
as can be seen in Figure 2. In the second phase (the feature
extraction phase), a PARAFAC model is computed and the
train and test features are extracted from the corresponding
rows of the factor matrix corresponding to the instances’
dimension. In the third step, the train and test feature matri-
ces are concatenated along the dimension corresponding to
instances and PCA is performed for decorrelation and
dimensionality reduction obtaining truncated train and test
matrices. The percentage (Gp) of variance explained in the
PCA loading matrix is a parameter of the method and can
vary for different datasets. In the fourth step, a robust qua-
dratic regression model is trained for predicting the instances’
labels. Finally, the histograms of the class predictions of each
bag are then calculated and fitted to a pseudoquadratic
discriminant analysis classifier.
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Input: training and test instances’ features U,,;,
the number of bins used for the histograms (6;;)
Output: prediction model

1. Concatenate Uy, and U,

m-leading singular values that preserve 6, of data variance.

5. Split the vector Pred
phase

train

7. Fit a QDA model F to map A toY (Equation (12)).

train train

and Uy, subjects’ training labels Y,,,;,, percentage of variance retained by PCA 6,,

. along the first dimension into a matrix U.
2. Perform PCA for decorrelation and dimensionality reduction on the concatenated matrix U and get the scores T, using the

3. Split the truncated scores matrix T into the corresponding T
4. Train a robust full quadratic regression model (Equation (10)) using T,,,;, and y,..;n (the instance labels inherited by the
corresponding bag labels) and get the instance labels predictions Pred,

train

into 0y, subsets of equal sizes and store the cutting points to be used as histogram bin edges in the testing

6. For each of the n training bags calculate the normalized cumulative histogram and construct the n x 8, feature matrix A,

and T, (will be used in the testing phase) scores matrix.

erain fOT €ach instance

train

ArLgoriTHM 1: TensMIL (training)

2.6.1. Bayesian Optimization of Hyperparameters. The
parameters of the two incorporated models, 0; and 0, are
calculated sequentially by supervised learning, whereas the
number of histogram bins (0;;) and the percentage (Bp) of
variance retained from the set of hyperparameters are
optimized externally and used as input in the learning phase.
We optimized the hyperparameters using Bayesian optimiza-
tion [35], based on 2-fold cross-validation on the training set.

The algorithm for the training phase of TensMIL is
shown in Algorithm 1.

2.7. Assessment of the Method. As evaluation metrics for
the selection of the hyperparameters and overall assess-
ment of the methodology, we used the classification accuracy
(number of correctly classified samples over total number of
samples), the balanced accuracy, and the area under the ROC
curve (AUC). The balanced accuracy is defined as

ZE:1 (Tc/nc)

Bacc = S
C

(13)

with T, being the number of correctly classified bags of
class c and n, the number of bags in class ¢, for c=1, ..., C.

The choice of metric depended on the dataset and the
metric used in prior work (ie., by selecting the same
criterion, comparison with other works was possible). We
performed a series of experiments by comparing different
classifiers on the same datasets using 10-fold cross-
validation and report the average accuracy. For each fold,
we internally used a 2-fold cross-validation procedure on
the training set in order to tune the hyperparameters of each
method. Once the best parameters were determined, they
were used to classify the test set to record the test accuracy.
Therefore, all methods were assessed on independent test sets
not used during training of the classification models, nor
during the optimization of the hyperparameters. For fairness,
we performed grid search in each fold for finding the best
parameters for each of the compared methods (our own as
well as other state-of-the-art methods).

3. Results and Discussion

For the evaluation of our proposed algorithm, we employed
two datasets: (i) the Breast Cancer UCSB Center for
Bio-Image Informatics benchmark dataset [36] consisting
of histopathology color images and (ii) multichannel record-
ings from the FrailSafe project [37] monitoring older people.
In the next sections, we describe in brief these datasets and
how they are represented by multidimensional arrays.

3.1. Data Sets

3.1.1. UCSB Breast Cancer Image Classification. The UCSB
breast cancer dataset [36] consists of color histopathology
images of 58 subjects of size 896 x 768 pixels taken from 32
benign and 26 malignant breast cancer patients. The classifi-
cation problem of these images was formulated as an MIL
problem first by Kandemir et al. [4] who segmented the
images in 7x7 patches and extracted features from each
patch. In an MIL setting, image patches are considered as
instances and images as bags. In order to represent the data-
set as a tensor in our approach, we also segment each image
in p X p patches and vectorize the pixels of each patch per
channel ending up to a matrix where the rows of the matrix
represent the pixels and the 3 columns represent the RGB
channels. If we arrange all these matrices across the first
dimension, we obtain a tensor of dimensions I x J x 3, where
=58 % p* and ] is the number of pixels per patch. If we
devote the first mode of the tensor to the instances, the
second mode to the pixels, and the third mode to the RGB
channels, we end up with a 3-mode tensor, containing all
instances as described earlier.

3.1.2. Physiological Signals from Monitoring Older People.
This data set was collected as part of the FrailSafe project
[37] and consists of physiological measurements acquired
from older people (age>70 years). The measurements are
acquired during ordinary all day indoor or outdoor activities.
The ultimate goal is to predict aging-associated decline in
reserve and function (denoted as frailty) through the extrac-
tion of geriatric indices from multiparametric data. Standard
frailty indices, such as the Fried phenotype of frailty [38], are
based on the common geriatric assessment (performed



ecg_rr

- x107 ecg hrr

yvy”

ba 1
= Xyz <

resp_piezo

500 1000 1500

(a)

500 1000 1500

500 1000 1500

Complexity

i ec&rlj
x107° ecg rrv
. ecg_hr
- br - -
‘ - _ ba
- T -
‘X 10°° 73CC7XYZ
. h ) resp_piezo
Subject 1 M L T B
L Yoas =/ !
O L
ecg_rr - =k 500 1000 1500
o x 107 ecg_hrv { d
_ecghr ™ 500 1000 1500
- br -
Subject 2 = ba o
IS _acc_xyz
~ 5
resp_piezo

500 1000 1500

500 1000 1500

500 1000 1500

AR

500 1000 1500

(b)

FIGURE 3: 3D-tensor for one subject (a) and 3D-tensor of all subjects (b).

sporadically and if considered necessary) and do not contin-
uously monitor the health status, neither capture different
medical domains. On the contrary, our goal is to extract
frailty indicators from the multidimensional recordings in
an effort to unobstructively monitor the health status of the
older people. We assess the predictive power of physiological
signals using TensMIL and the Fried score as ground truth,
measured on the same time period with the acquired data.
According to the Fried scale [38], three frailty stages can be
distinguished: nonfrail, prefrail, and frail.

The physiological signals used in this study included
time-synchronized measurements (calculated by dedicated
software algorithms) from respiration, heart, posture, and
physical activity. Seven channels were resampled at the same
frequency (25 Hz): respiratory raw signal (by the piezoresis-
tive sensor), magnitude of acceleration in 3 axes, breathing
amplitude, breathing rate, ECG heart rate, ECG heart rate
variability, and ECG RR interval. The measurements are
recorded using two different devices, a fact that makes this
dataset especially challenging. More details on the problem
objective and the incorporated devices can be found in [1, 2].

The data representation in a tensorial form included
the extraction of nonoverlapping time windows of one
minute duration (i.e, 1500 time points). We consider
the measurements in each time window for each subject
as an instance, while the total recordings (all instances)
for each subject compose one bag. In order to model the data
in the form of a multidimensional array, we concatenate

TaBLE 1: Number of instances and percentages of bags (subjects)
and instances (time windows) per class.

Class Nr. of bags Nr. of instances Perc. of bags irljse'::ﬁ:e:fs
Nonfrail 49 7127 42.24% 37.03%
Prefrail 54 8803 46.55% 45.74%
Frail 13 3314 11.21% 17.22%
Sum 116 19,244 100% 100%

the multiple instances (i.e., time windows) of each subject in
a 3-dimensional tensor ' of dimensionality 7, x 1500 x 7,
i=1,2,...,n, where n;is the number of instances available
for each subject. In order to construct the whole tensor, we
concatenate all tensors 2 along the first dimension to pro-
duce a new 3D-tensor & containing all instances of all bags as
shown in Figure 3, resulting to a 19244 x 1500 x 7 tensor. In
Table 1, we summarize the available data per frailty group.

3.2. Experiments

3.2.1. PARAFAC Feature Insights. Before proceeding with the
results of the analysis, we provide some insights on the nature
of the extracted features. As stated before, a tensor with full
or missing values can be decomposed into R rank-1 compo-
nents, producing a high-order dictionary that represents the
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latent concepts in the data. Since instances are assigned to the
first dimension of the tensor, each mode-1 slice corresponds
to an instance. Having computed the PARAFAC factors
U, V, and W, we can compute, based on (1), the reconstruc-
tion of the data tensor either from full observed values or
from a subset of the tensor’s values (missing values).

Figure 4 depicts five random instances of the Breast
Cancer dataset and their corresponding reconstructions with
the ALS algorithm using full values (upper row) or with the
StrProxSGD algorithm using 10% observed values (lower
row). It can be observed that the reconstruction from full
values results to a clearer version of the original images. As
will be discussed in the next section, our experiments showed
that the information preserved from the decomposition
(even when using only 10% of the observed values) is
sufficient to accurately classify the images in benign and
malignant cases. The PARAFAC decomposition produces
spatial (V from Equation (3)) and color (W from Equation
(3)) components that correspond to the second and third
dimension of the data tensor, which constitute the high-
order dictionary. Figure 5 illustrates 40 (selected out of 120)
spatial components of the dictionary. We observe also that
the spatial components computed from 10% observed values
are slightly noisier than the components computed from full
values, a fact that showed to not significantly affect the
classification accuracy.

3.2.2. Classification Assessment. The evaluation metric that
we used for our experiments was different for each dataset.
For the BC dataset, we report the AUC, since this metric
was used for evaluation in the majority of other works. For
the sake of completeness, we report also the mean test
accuracy over 10 different test sets.

As reported in Table 1, the physiological signals dataset is
highly unbalanced containing 11.21% of frail bags and about
42% and 47% of nonfrail and prefrail bags, respectively. For
this reason, along with the test accuracy, we report also the
balanced accuracy.

3.2.3. Breast Cancer Diagnosis from Histopathology Images.
In this experiment, we computed the accuracy and the AUC
of the proposed method against state-of-the-art MIL algo-
rithms. We report results for each of the algorithms employ-
ing the features extracted by Kandemir et al. [4], and features

extracted by the proposed method computing the PARAFAC
decomposition from full values using the ALS algorithm [30]
and from 10% randomly selected observed values using the
StrProxSGD algorithm [31]. We should note here that the
features extracted by Kandemir et al. [4] are application-
specific in contrast to our extracted features that are
problem-independent and can be obtained directly from
any raw multidimensional data with the same procedure.

As can be observed in Table 2, when we employ the fea-
tures from [4], our method is as good as JC2MIL [40] but it
is outperformed by the other methods. This suggests that
the feature extraction process is strongly related with the pro-
posed MIL classification method. Indeed, when we employ
the proposed features from tensor decomposition, perfor-
mance improves as can be shown from the performance of
TensMIL from full and 90% missing values, respectively.
When using ALS features from full data, our method out-
performs all other methods in terms of AUC, improving
the performance by 4%-11% while in terms of accuracy
TensMIL outperforms all other investigated methods and is
comparable to MCILBoost. Overall, our method is compara-
ble or outperforms other methods in terms of AUC and out-
performs all other methods in terms of accuracy, except
MILBOOST [41]. Concerning the case of data with missing
values, our method outperforms in terms of accuracy all other
investigated methods and in terms of AUC all methods except
of JC2MIL to which it is comparable. Let us note here that the
extraction of the hand-crafted features in [4] cannot be cur-
rently reproduced for data with missing values because the
code for the feature extraction is not provided. Thus, for the
missing values experiment, we compare only with the features
extracted by StrProxSGD [31].

3.2.4. Physiological Signals for Frailty Prediction. In the next
experiment, we evaluated the accuracy of TensMIL for frailty
status prediction of older people based on motion, cardiac,
and respiratory signals. In these experiments, the hyperpara-
meters of the method were estimated by cross-validation on
the training set (using the StrProxSGD algorithm for extract-
ing features from 10% observed values) and were subse-
quently used for the case of full values. We performed two
series of experiments. In the first experiment, we considered
the three distinct frailty stages proposed by Fried (nonfrail,
prefrail, and frail), whereas in the second experiment, we
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merged the prefrail and frail classes to create a less unbal-
anced dataset. Feature extraction was performed using the
ALS algorithm from full data and the StrProxSGD algorithm
for missing data. The results of the three class problem from
full and incomplete data are shown in Table 3. When full
values are considered, the accuracy of the proposed method
is 45.76% (37% higher than the probability of random guess)
and the balanced accuracy is 34.06% (similar to random
guess). In contrast, when only 10% of the values are

employed, we obtain accuracy 73.41% and balanced accuracy
67.17%, which is an improvement by a factor of 1.6 (for the
accuracy) and 1.97 (for the balanced accuracy). These results
strongly suggest that the data are highly noisy. Even though
PARAFAC decomposition is robust against noise [43], ALS
algorithm using full data could not find a good high-order
dictionary for discrimination between the three classes. On
the other hand, when only 10% of the data are employed,
StrProxSGD could calculate a more suitable dictionary for
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TaBLE 2: Tenfold cross-validation mean test accuracy and mean AUC for the BC dataset.

. StrProxSGD R =120

BC Kandemir [4] ALS R=120 (90% missing values)
Acc AUC Acc AUC Acc AUC

MILES [39] 81.33 (0.15) 0.91 (0.15) 72.67 (0.21) 0.79 (0.21) 63.33 (0.18) 0.72 (0.15)
JC2MIL [40] 74.33 (0.16) 0.84 (0.16) 72.33 (0.18) 0.78 (0.18) 77.67 (0.08) 0.88 (0.14)
MILBoost [41] 89.33 (0.09) 0.94 (0.09) 81.67 (0.21) 0.87 (0.19) 68.33 (0.3) 0.77 (0.27)
MCILBoost [42] 82.33 (0.15) 0.93 (0.12) 85.00 (0.12) 0.90 (0.12) 76.67 (0.22) 0.84 (0.16)
TensMIL 74.33 (0.16) 0.86 (0.16) 84.67 (0.17) 0.90 (0.15) 79.33 (0.16) 0.85 (0.15)

TaBLE 3: Test accuracy and balanced accuracy from full and 90%
missing values for the 3 class problem.

TaBLE 5: Mean CPU running time over the 10 cross-validation folds
for the MIL classification component.

StrProxSGD R = 60
(90% missing values)
Acc Bacc Acc Bacc

TensMIL 45.76 (0.13) 34.06 (0.09) 73.41(0.01) 67.17 (0.13)

Method ALS R=60

TaBLE 4: Test accuracy from full and 90% missing values for the 2
class problem.

StrProxSGD R = 60

Methods ALS R=60 (90% missing values)
MILES [39] 51.59 (0.13) 67.20 (0.11)
JC2MIL [40] 56.82 (0.07) 55.30 (0.08)
MILBoost [41] 50.83 (0.15) 54.39 (0.15)
MCILBoost [42] 45.46 (0.14) 60.91 (0.22)
TensMIL 54.02 (0.13) 80.83 (0.16)

the classification task. Let us note here that we do not report
results from other MIL classifiers, since their performance
was very poor when using the one-against-all strategy for
the above multiclass problem.

Since the prefrail class lies between the frail and nonfrail
class and in order to construct a more balanced dataset, we
merged the prefrail with the frail group and examined
the binary classification problem. As reported in Table 4,
TensMIL achieved from 26.44% to 13.63% higher accuracy
than the other methods by using only 10% of randomly
selected values. For the case of full values, the proposed
method achieves from 8.56% to 2.43% better accuracy. Only
JC2MIL achieves slightly better accuracy than TensMIL.

In Table 5, we report also the mean CPU running time
(across the 10-fold cross-validation sets) of TensMIL as com-
pared to the other investigated state-of-the-art methods. The
time reported corresponds to the frailty classification prob-
lem based on physiological signals, since this dataset was
the largest among the two examined applications. The feature
extraction component using tensor decomposition is the
most time-consuming part of the method (it requires about
2.25hours), whereas the MIL component is computationally
fast. Specifically, the classification component in TensMIL
requires 7 to ~52 times less training time as compared to
the investigated classifiers. This fact is due to the simplicity
of TensMIL since only a full quadratic regression and a

Methods Training time® Testing time®
MILES [39] 42 sec 1 sec
JC2MIL [40] 56 sec <1 sec
MILBoost [41] 52 sec 5 sec
MCILBoost [42] 309 sec 6 sec
TensMIL 6 sec <1 sec

“The experiments were conducted on an Ubuntu 16.04 LTS desktop,
comprising 4 2.0 GHz Intel (R) Xeon (R) CPU E5504 processors with
23.5 Gb RAM, running MATLAB R2017a.

QDA model have to be trained. In terms of the inference time
(after feature extraction), TensMIL along with JC2MIL
achieves a testing time under 1second, which is faster than
all the other investigated algorithms. We should note here
that the experiments for the tensor decomposition were con-
ducted on a Red Hat Enterprise Linux, release 6.7 (Santiago)
server, comprising 162.8 GHz AMD Opteron™ 6320 proces-
sors with 62 Gb RAM, running MATLAB R2018a, while the
experiments for measuring the training and test time were
conducted on an Ubuntu 16.04 LTS desktop, comprising
42.0 Gz Intel® Xeon® CPU E5504 processors with 23.5Gb
RAM, running MATLAB R2017a.

Finally, we compared our method with a clustering
approach proposed in [1] for prediction of several clinical
metrics that used statistical features from the same physio-
logical signals, as well as other devices (GPS, game platform).
Although this approach [1] showed high potential for some
clinical metrics, the accuracy for the frailty index expressed
by the Fried score was only 51% for the 2 class problem
(nonfrail vs. prefrail and frail). TensMIL achieves 3.02%
and 29.83% higher accuracy when all values or only 10% of
the values are used, respectively. The clustering approach in
[1] was not evaluated with missing values; however, we
expect small deviations in accuracy due to the large time scale
used for feature extraction and the statistical nature of the
implemented features.

4. Conclusions

In this work, we exploited the high-order structure of health
data through tensor decomposition aiming at extracting
application-independent features that can facilitate predic-
tion in multiple-instance learning paradigms. The prediction
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models were trained in a sequential fashion to learn local and
global content, while external hyperparameters were esti-
mated by Bayesian optimization, thus providing an end-to-
end architecture. The method could successfully represent
and classify data with a significant amount (90%) of missing
values. It was evaluated in the UCSB breast cancer bench-
mark dataset, as well as for prediction of aging-associated
decline. In both application scenarios, the proposed method
outperformed or was comparable to existing state-of-the-art
machine learning techniques. Moreover, the obtained results
were superior to our previous work based on statistical fea-
tures and cluster analysis. Future work includes the investiga-
tion of sparse representations and addition of nonnegativity
and orthogonality constraints for the extraction of more nat-
ural and interpretable data concepts.

Data Availability

The UCSB Breast Cancer data set is publically available and
can be downloaded from https://bioimage.ucsb.edu/research/
bio-segmentation. The data of the physiological signals for
frailty prediction are collected as part of the FrailSafe Project
[27] and will be available at the repository of the project:
https://frailsafe-project.eu/ (contact:vasilis@ceid.upatras.gr).
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