
1 

Project Title:  Sensing and predictive treatment of frailty and associated co-
morbidities using advanced personalized models and 
advanced interventions 

Contract No:  690140 

Instrument:   Collaborative Project 
Call identifier:  H2020-PHC-2014-2015 

Topic: PHC-21-2015: Advancing active and healthy ageing with ICT: Early 
risk detection and intervention 

Start of project:  1 January 2016 

Duration:   36 months 

Deliverable No: D4.10 

LingTester (Prototype) (vers a) 

Due date of deliverable: M12 (31th December 2016) 
Actual submission date: 31th December 2016 

Version:    1.3 

Date:    22nd December 2016 

 

Lead Author:   Sgarbas Kyriakos (UoP) 
Lead partners:  UoP  

 

 

   
 

  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 2 - 

CHANGE HISTORY 
Ver. Date Status Author (Beneficiary) Description 
1.0 15/11/16 Draft N. Fazakis, 

C. Tsimpouris, 
K. Sgarbas (UoP) 

First Draft 

1.1 22/11/16 Draft N. Fazakis, 
C. Tsimpouris 

Update of introduction, list of tables, 
minor text corrections,  
addition of references 

1.2 21/12/16 Pre-Final N. Fazakis, 
C. Tsimpouris, 
K. Sgarbas (UoP) 

Accompanying files included  

1.3 22/12/16 Final N. Fazakis, 
C. Tsimpouris, 
K. Sgarbas (UoP) 

Final version 

 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 3 - 

 
EXECUTIVE SUMMARY 

LingTester is the FrailSafe language analysis tool that aims to process the user’s typed text and 
detect abnormal behaviour. At this point, the prototype is in early alpha stage, but still it is able 
to perform classification according to levels of frailty. The present deliverable describes the 
development of the prototype, the algorithms used, the training process and some preliminary 
test results. 
 
This deliverable is part of WP4. The main objective of this Work Package is to handle the 
collection, management and analysis of frailty older people data streamed through their social, 
behavioural, cognitive and physical activities. Both offline and online methods will be developed. 
Moreover, the above methods will be applied in order to manage and analyze new data and 
also generate the FrailSafe patient models. 
 
LingTester will be able to detect signs of mental frailty and personality trait shifts by linguistic 
processing of a person’s written (typed) messages. The linguistic analysis is performed in 
several layers (ranging from word spelling to Part of Speech -POS- analysis) utilizing the state 
of the art models in order to determine the mental states of the patients the input texts exhibit. 
The linguistic corpus obtained from D4.7 is used both for the initial training and the final passive 
mode (off-line) testing of the prototype.  
 
Along with the results of the patient data analysis, two aiding software programs are delivered in 
order for the FrailSafe user to manage the patient database and use prediction model to obtain 
predictions for specific potential patients.  

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 4 - 

 
DOCUMENT INFORMATION 

 

Contract Number: H2020-PHC–690140 Acronym: FRAILSAFE 

Full title Sensing and predictive treatment of frailty and associated co-morbidities 
using advanced personalized models and advanced interventions 

Project URL http://frailsafe-project.eu/ 

EU Project officer Mr. Jan Komarek 

 

Deliverable number:  4.10 Title: LingTester (Prototype) (vers a) 

Work package number:  4 Title: Data Management and Analytics 

 

Date of delivery Contractual 31/12/2016 (M12) Actual 31/12/2016 

Status Draft x Final o 

Nature Report o Demonstrator o Other x 

Dissemination 
Level 

Public x Consortium o 

Abstract 

 
(for dissemination) 

This is a public deliverable that summarizes the progress of the 
construction of LingTester offline prototype. The architecture of the system 
is described in detail, and what steps were needed to evaluate its output. 
Also, the structure of the internal offline database is described and how it 
is managed. The deliverable includes a demo and source files. 

Keywords offline data management, frailty prediction, classification 

 

Contributing 
authors 

 
(beneficiaries) 

Fazakis Nikos (UoP) 
Tsimpouris Charalampos(UoP) 
Sgarbas Kyriakos (UoP) 

Responsible 
author(s) 

Sgarbas Kyriakos Email sgarbas@upatras.gr 

Beneficiary UoP Phone +30 2610 996 470 

 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 5 - 

Table of Contents 
CHANGE HISTORY ......................................................................................................... 2 

EXECUTIVE SUMMARY .................................................................................................. 3 

DOCUMENT INFORMATION ........................................................................................... 4 

List of Figures ................................................................................................................. 7 

List of Tables .................................................................................................................. 8 

List of abbreviations and acronyms (in alphabetical order) ...................................... 9 

1. Introduction ............................................................................................................... 10 

2. LingTester architecture ........................................................................................... 11 
2.1 Initial architecture .............................................................................................................. 11 
2.2 Current architecture .......................................................................................................... 12 

3. Data collection .......................................................................................................... 13 
3.1 Data analysis ..................................................................................................................... 14 
3.2 Data verification ................................................................................................................ 17 

4. Local database ......................................................................................................... 18 
4.1 Introduction ....................................................................................................................... 18 
4.2 Database description ........................................................................................................ 18 
4.3 Part-Of-Speech extraction ................................................................................................. 21 
4.4 English translation for sentiment analysis ......................................................................... 22 
4.5 Database self-validation .................................................................................................... 23 
4.6 Database auto-update ....................................................................................................... 23 

5. Experiments and results .......................................................................................... 23 
5.1 Preproccessing ................................................................................................................. 23 
5.2 Precision & Recall ............................................................................................................. 26 

6. Conclusions .............................................................................................................. 32 

7. System development ............................................................................................... 33 
7.1 Software used for training and prediction .......................................................................... 33 
7.2 Installation notes for training and prediction ...................................................................... 33 

7.2.1 Python core and Python modules ............................................................................... 34 
7.2.2 Java Virtual Machine (JVM) ........................................................................................ 34 
7.2.3 POS Tagger ................................................................................................................ 34 
7.2.4 OpenOffice dictionaries .............................................................................................. 34 
7.2.5 Weka .......................................................................................................................... 34 

8. Frailsafe user software ............................................................................................ 35 
8.1 Steps to import new data .................................................................................................. 35 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 6 - 

8.2 Steps to export results ...................................................................................................... 36 

9. Future improvements for the Prototype ................................................................. 39 

10. Ethics and Safety ................................................................................................... 40 

11. References .............................................................................................................. 41 

12. Source files ............................................................................................................. 43 

13. Annexes .................................................................................................................. 44 
13.1 Database management & feature extraction ................................................................... 44 
13.2 Prediction tool ................................................................................................................. 55 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 7 - 

List	of	Figures 
Figure 1. Initial architecture for LingTester 11 
Figure 2. Current architecture for offline LingTester 13 
Figure 3. Patients per language 14 
Figure 4. Patients per frailty status 15 
Figure 5. Distribution of patients per sex 16 
Figure 6. Patient distribution per transcript feature 24 
Figure 7. Training and prediction methodology 24 
Figure 8. Decision tree based on C4.5 algorithm 27 
Figure 9. Model statistics 30 
Figure 10. Screenshot of real time operation 36 
Figure 11. Input file structure 37 
Figure 12. Screenshot of prediction programme while executing 38 

 
 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 8 - 

 
List	of	Tables 

Table 1. POS tagger example 22 
Table 2. Analysis of all extracted features 25 
Table 3. Summary of classification algorithms 29 
Table 4. Parameterization of the Decision Tree model 29 
Table 5. Parameterization values of the Decision Tree model 30 

 

List	of	annexes 
Annex 1 Database management & feature extraction 44 
Annex 2 Prediction model, source code 55 
 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 9 - 

 
List	of	abbreviations	and	acronyms	(in	alphabetical	order) 
API Application Programming Interface 

ARFF Attribute-Relation File Format 
JVM Java Virtual Machine 
KNN K-Nearest Neighbor 
NLP Natural Language Programming 

LOOCV Leave-one-out cross-validation 
PoS Part Of Speech 
SVM Support Vector Machine 
UoP University of Patras 

Weka Waikato Environment for Knowledge Analysis 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 10 - 

 

1. Introduction 
 
A proper evaluation of the nature of a patient’s language impairment requires consideration of 
patterns of breakdown in the context of an account of language comprehension which specifies 
the various processes and representations involved: the representation of linguistic knowledge, 
it's automatic and controlled access, and the mental processes which combine different types of 
linguistic knowledge. When we understand a written sentence, we automatically access the 
meanings of individual words together with their syntactic specifications and combine them on 
the basis of this lexically specified information. There are various types of text analysis 
processes; some are syntactic, such as the integration of a definite article with the following 
noun or adjective to form a noun phrase, and the integration of a verb and its argument into a 
verb phrase. Others are morphological, such as the combination of stems and affixes to form 
morphologically complex words, and yet others involve combinatorial processes which modify 
the meanings of words when they are integrated with other words. For example, an aspect of 
the meaning of grass is that it is green; but in the phrase dry grass, its meaning changes slightly 
to highlight a different aspect of grass— its brownness. 
 
In order to implement the first version of LingTester an architectural analysis was prepared. The 
current architecture of LingTester led the need to categorize the research in four main areas. 
 
The first area of research relates to the analysis and the issues of the collected subjects’ data. 
The key aspects and features of the dataset were investigated and solutions were given to the 
unexpected arosen problems. The structural organization of the local database and the 
development of the processes for the management of the local database was another area of 
research. A simple but very informative and mobile structure for offline data storage along with 
its necessary manipulation methods was designed and implemented. In the area of the highly 
critical classification task, the domains of feature extraction, feature selection text classification 
and model optimization were deeply studied and exhaustively experimented in order to obtain 
the first acceptable prediction results. The implementation of the aiding software for the 
FrailSafe user was another key area of research, with the deployment of technologies like 
Python and Java a cross-platform approach was achieved and the first semi-integrated user 
software package has been developed successfully. 
 
Following the analysis of the basic areas of research this deliverable includes, chapters relating 
with the System Development subjects of the software used and the installation notes, the basic 
usage instructions of the FrailSafe software package and finally the future work that seems 
promising and is already being planned, for the completeness of the document. 
  
 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 11 - 

2. LingTester architecture 

2.1 Initial architecture 

The  initial design of the Natural Language Analysis component (a.k.a. LingTester), is 
shown in the following diagram: 

 

Figure 1. Initial architecture for LingTester 

LingTester was initially designed to include four computational linguistic modules: a Word 
Speller, a Morphological Processor, a Syntactic Parser, and a Semantic Processor. A Language 
Model would be able to feed them with linguistic information. The Language Model would be 
composed by a Formal Component representing the lexicon, grammar and syntactic rules of the 
language, and a Statistical Component containing results of word and bigram frequencies. The 
whole structure was meant to be modular (in order to facilitate its use in several languages - two 
in the project) and would be developed over a blackboard scheme representation model that 
would be able to collect the output of each component and enable them to interact with each 
other, when necessary. The system was based on the main assumption that all texts would be 
written by the patients themselves and the classification module would provide rule-based 
results. 

Thus, after a stage of adaptation/training/fine-tuning, LingTester was expected to detect frailty 
symptoms related to the use of language, and derive the patient's condition, according to the 
following table: 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 12 - 

STAGE CONDITION SYMPTOMS (Indicative) 

1 Normal - 

2 Cognitive Decline Misspellings, character transpositions/ eliminations. 

3 Cognitive 
Impairment 

Misuse of functional words, morphological errors. 

4 Dementia Serious syntactic and semantic errors. 

 

It should be stressed once more that the aforementioned design presupposes that the users will 
be able to type their own text messages, since key features like spelling, morphology and 
punctuation carry a significant portion of the information we expected to use in order to detect 
possible discrepancies in written text. 

With this in mind, we have included some questions in the questionnaires (detailed in 
deliverable D2.1 Clinical Study Methodology) that serve the purpose of producing data for the 
LingTester (for training and test). However, during the process of questionnaire collection we 
realized that very few subjects were able to type. The vast majority were not, and they dictated 
their answers to the person responsible for carrying out the interview who then typed the 
answers as best as they could. 

This changed the initial architecture significantly. We had to use methods of mental frailty 
detection that would be robust under interpretation via a third person. Specifically, it became 
evident to treat the process of text writing as a Hidden-Markov Process, where the person's 
mental state evolves over time, but we do not have direct data on this evolution, but only indirect 
evidence (the written text) that can reveal the (hidden) mental state. For this reason, statistical 
and information-based text analysis methods were prefered instead of the rule-based of the 
initial design. This was already documented in D2.1. The new (current) architecture is described 
next. 

2.2 Current architecture 
After thorough study of current practices and development, we re-evaluated the initial 
architecture according to the following figure. The structure has been kept mostly intact, 
however with some specific changes. Firstly, the syntactic parser has been replaced by a Part 
Of Speech tagger (see section 4.3 for more details), as the later can produce more accurate 
results for the Greek language. Furthermore, semantic processing module was replaced by a 
sentiment analysis module to try and provide a sentiment analysis of the patient through written 
text. Written texts are translated to English one, and then we can export polarity features to the 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 13 - 

classification process.  This decision was based at the fact, that there is no state of the art 
available tools for sentiment analysis for this language. It has been shown that working with 
standard technology and existing sentiment analysis approaches is a viable approach to 
sentiment analysis within a multilingual framework (Denecke, 2008). 
 
As shown in the following figure (Figure 2), written text is submitted to LingTester tool through a 
predetermined process and is stored within a secure database for further analysis. In order to 
create the training model, all patient rows are fetched from the offline database and features are 
extracted for the next step. Each feature utilises different resources and is based on different 
third-party or not tools. These tools are described thoroughly in section 4. This step is followed 
by the training module which extracts a model in a binary format for testing and evaluation. This 
methodology has been repeated multiple times so as to maximise accuracy while also 
optimising all parameters of the system. The final model is packaged in a way to be more 
programmer-friendly (see section 8 for more details). 

 
Figure 2. Current architecture for offline LingTester 

 
Finally, it should be stressed that system should provide patient's condition in the following 
clusters: non-frail, pre-frail, frail. 

3. Data collection 
Although data collection at first might not seem related to the development of the prototype, it 
actually plays a very significant role. Even inspection of the data collected can indicate which 
analysis tools and methods are applicable to the task. We have already stated that the nature of 
the collected data forced us to reconsider the aforementioned initial design. Moreover, in the 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 14 - 

current architecture text data are needed to train and test several components of LingTester. 
For this first version of the prototype, the texts we used were the ones that were available until 
31st October 2016. This first batch of text data is described next. 

3.1 Data analysis 
The current deliverable uses data collected until 31/10/2016. Until then we had available the 
following patient data: 

● Data from 51 patients, UoP, Greece. One submission per patient. 
● Data from 66 patients, MATERIA, Cyprus. One submission per patient. 

 
The following patient data per recruitment centre are expected, according to the following 
timeline as set in detail at D2.1 Clinical study methodology: 

● 80 patients from Start-up Group A, 
● 20 patients from main Group B, 
● 25 following afterwards will belong to the Evaluation Group C and 
● the last 25 to the Control Group (D), totalling 150 patients. 

 
The total data volume from all recruitment centers will include 450 patients, with multiple 
submissions during the duration of the project, per patient. An initial statistical analysis based to 
the current set of patient data returned the following results per classified feature: 

 
Figure 3. Patients per language 

 
 
 

● Per language: 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 15 - 

○ Data from 48 patients were provided in Greek, but 5 of them refused or were 
unable to provide any written text, neither for the description of image, nor 
describing a personal event 

○ Data from 3 patients were written in Greek polytonic. While it was not in our initial 
scope to differentiate this information, it was recorded in the offline database for 
future study 

○ Data from 66 patients were provided in Cypriot Greek, but 35 of them refused or 
were unable to provide any written text, neither for the description of image, nor 
describing a personal event 

 

 
Figure 4. Patients per frailty status 

 
● Per frailty status: 

○ 14 patients were classified as non-frail 
○ 53 patients were classified as pre-frail 
○ and 44 patients were classified as frail 
○ while for 6 patients, there was no information available for their frailty status. At 

this point, we should stress that all these patient data (6) were excluded from the 
training procedure 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 16 - 

 
Figure 5. Distribution of patients per sex 

 
● Per sex: 

○ 47 patients were male 
○ and 70 patients were female 

 

 
Figure 6. Patient distribution per transcript feature 

 
● Per transcript mode: 

○ 17 transcripts (column “yes”) were dictated from the patient to the doctor, and the 
latter typed the text 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 17 - 

○ 31 transcripts (column “no”) were handwritten by the patient, and they were 
afterwards  digitized by the doctor 

○ 69 was classified as na (not available) meaning that patient refused to participate 
in this action (written or oral) which are 40 in total, see figure 3 column “without 
written text”. Furthermore, for the remaining  29 cases we were unaware of which 
case it was between yes/no and this is the reason we set this attribute to na, till 
we have a detailed report of which is the case by the providing team. We project, 
that this number will be lower in the revised report. 

 
Finally, in total only two patients provided written text outside the aspect if the project. As this 
number is extremely small, we decided not to include this data in the following research 
methodology. 
 

3.2 Data verification 
During data collection, some discrepancies were noted concerning the slightly different patient 
numbering among different research groups. In the local database we took measures to verify 
the correct index for each patient since no version control was used during the collection of 
each dataset. 
  
 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 18 - 

 

4. Local database 

4.1 Introduction 
An offline database has been created based on initial raw data, as given by the partners. While 
we are still under heavy development till we finalise the selection of features, we had to keep an 
easy-to-use, cross-platform or operating system, and loose structure database. This 
aforementioned decision provided numerous advantages, as discussed below: 

● Each patient data is saved within a single text file, with UTF8 encoding, based on the 
underlying file structure system, whatever this is (NTFS/Fat32 for Windows, Ext4 for 
Linux, etc). This also helps to avoid any database management tools like ODBC drivers 
and so forth. 

● File naming is based on patient id. So, it is really easy to retrieve data for a single patient 
and edit the file whenever necessary through user’s favourite editor 

● All tags (attributes) per patient are dash prefixed, so we can add or remove attributes 
however it suits best 

● Data is retrieved and saved through generic Python functions, as described in the 
following section. Also, due to the use of the filesystem, we can also construct different 
or new methodology in a different programming language without potential connection 
problems with a database system. 

● Create backups of all data, using a compressed data type, like zip 
● Can support versioning. Using any known version control system such as GIT, we are 

able to keep track of the database changes at all times looking backwards 
 
On the downside, this database structure does not provide any security firewall by itself. 
Security is based on the access provided by the file system, and for this reason all files are 
stored locally. 
 
While it can be argued if this this structure can sustain a production-ready solution with 
thousands of rows, we keep in mind at all times. Upon methodology finalisation, database will 
also get its final form and this will be discussed again in a later report. 
 

4.2 Database description 
 
The structure of the data within the database files is described below.  An example of a patient's 
data with id 1001 is the following: 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 19 - 

 
-patient 1001 
-tag prefrail 
-transcript no 
-language greek 
-sex female 
 
-desc_event 
Υπάρχουν πολλά σηµαντικά θετικά γεγονότα στη ζωή µου. Ένα από αυτά είναι η επιτυχία µου 
στη Φιλοσοφική Σχολή του Πανεπιστηµίου Αθηνών, καθώς την ίδια περίοδο, µε παράλληλες 
εξετάσεις και στη Νοµική Αθηνών. 
Πήρα µεγάλη χαρά γιατί ήταν καρπός πολύ εντατικής µελέτης- ένα ολόκληρο καλοκαίρι µόνον- 
µε δεκαεπτά ηµέρες µόνον φροντιστήριο και επί πλέον είχα µεγάλη επιθυµία να σπουδάσω, να 
µορφωθώ. Διάλεξα τη Φιλοσοφική και δεν έχω ούτε µια στιγµή µετανοιώσει… 
 
-desc_event_ENG 
There are many important positive events in my life. One of them is my success at the 
Philosophical Faculty of the University of Athens, as the same period, with parallel 
tests and Athens Law. 
I took great pleasure because it was the result of very intensive meletis- an entire 
summer monon- with seventeen days only tutorial and moreover I had a great desire to 
study, get an education. I chose Philosophy and I have not a moment regret ... 
 
-desc_event_POS 
Υπάρχουν verb/--/active/plural/present 
πολλά adjective/accusative/neuter/plural/-- 
σηµαντικά adjective/accusative/neuter/plural/-- 
θετικά adjective/accusative/neuter/plural/-- 
. 
. 
. 
έχω verb/--/active/singular/present 
ούτε conjunction/--/--/--/-- 
µια numeral/--/--/--/-- 
στιγµή noun/accusative/feminine/singular/-- 
µετανοιώσει… noun/genitive/masculine/singular/-- 

 
-desc_image 
Βρισκόµαστε µπροστά σε µια ‘’ σουρεαλιστική’’ εικόνα, σε µια σκηνή που διαδραµατίζεται σε 
µια κουζίνα. Μια ‘’καλή’’ νοικοκυρά ασχολείται µε το πλύσιµο ή το σκούπισµα των πιάτων 
ενω µπροστά της η λεκάνη του νεροχύτη πλυµµηρίζει και τα νερά χύνονται στο πάτωµα. 
Θαυµάζει κανείς τη µακαριότητά της, την αταραξία της µπροστά στο φαινόµενο. 
Άραγε τί την απασχολεί που δεν µπορεί να αντιληφθεί ότι τα παιδιά της, στον ίδιο χώρο, 
πίσω από την πλάτη της…. ‘’ κλέβουν’’  το γλυκό από το επάνω ντουλάπι και το χειρότερο, ο 
γιός της που έχει ανέβει πάνω σε ένα ψηλό σκαµπό κοντεύει να πέσει, καθώς αυτό γέρνει στο 
πλάϊ ,έτοιµο να καταρρεύσει. Ω, τι κόσµος µαµά!! 
 
-desc_image_ENG 
We face a surreal picture, in a scene that takes place in a kitchen. A good housewife 
engaged in washing or wiping the dishes while in front of the sink basin plymmirizei and 
the water poured on the floor. One admires the blessedness, the equanimity of the front 
of the phenomenon. 
I wonder what the concern can not perceive that children of the same place, behind the 
... back.  Steal sweet from the upper cabinet and the worst, the son who has climbed on a 
tall stool is about to fall, as it leans on the side, ready to collapse. Oh, mama world 
!! 

 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 20 - 

-desc_image_POS 
Βρισκόµαστε verb/--/active/plural/present 
µπροστά adverb/--/--/--/-- 
σε preposition/--/--/--/-- 
µια numeral/--/--/--/-- 
. 
. 
. 
τι pronoun/inflectionless/--/--/-- 
κόσµος noun/nominative/masculine/singular/-- 
 
-prev_text 
 
-prev_text_ENG 
 
-prev_text_POS 
 

 
While, there is no styling within the plain text files, and newlines do not affect the parsing of the 
file structure, from the above structure we can easily retrieve all available attributes (tags) as 
they are all prefixed by a dash, which are: 

● -patient: The patient ID. This attribute exists in all files. While the same number exists 
also in the filename, we put it here for consistency reasons and backwards compatibility 
for future updates. 

● -transcript: This is identified by the following options (also described in detail in 
section 3.1) 

○ yes: Text was written by the doctor, while the patient was talking 
○ no: Text was written in hand by the patient, and it was digitized through the 

doctor 
○ na: Not available, for instance for patients that refused to participate in this action 

● -language: This is identified by the following options 
○ greek: Text is in Greek 
○ greek-polytonic: Text is in Greek Polytonic. 
○ greek-cypriot: Text is in Greek cypriot. 
○ french: Text is in French. 

● -tag: This is identified by the following options 
○ nonfrail: Patient is identified as non-frail 
○ prefrail: Patient is identified as pre-frail 
○ frail: Patient is identified as frail 
○ na: Data is missing/not available 

● -sex: This is identified by the following self-explanatory options 
○ male 
○ female 

● -desc_event: Multiline text, the description of an event 
● -desc_image: Multiline text, the description of an image 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 21 - 

● -prev_text: Multiline text, previous text of the same patient, which is not necessarily a 
description of an event or an image. It can be of any context and is provided by the 
subject, for instance an old email, to compare extracted features between different time 
periods. 

● -desc_event_POS, -desc_image_POS, -prev_text_POS: Part of speech 
information for each multiline  tag, as set before 

● -desc_event_ENG, -desc_image_ENG, -prev_text_ENG: English translation, 
based on -desc_event, -desc_image, -prev_text data. 

 

4.3 Part-Of-Speech extraction 
The Part of Speech tagger attempts to automatically determine the part of speech (e.g., noun, 
adjective, verb, etc.) of each word occurrence in Greek texts. It can also tag each word 
occurrence with additional information, such as the gender, number, and case of each noun, the 
voice, tense, and number of each verb (Koleli, 2011). The current version of AUEB's Greek 
POS tagger that was used is version 2 alpha and is released under the GNU General Public 
License. 
 
The POS tagger can recognise the following classes of words, along with other useful 
information per case: 

1. adjective 
2. adverb 
3. article 
4. conjunction 
5. noun 
6. numeral 
7. other 
8. particle 
9. preposition 
10. pronoun 
11. punctuation 
12. verb 

Following is an example evaluating this POS tagger in action. The sentence “Υπάρχουν πολλά 
σηµαντικά θετικά γεγονότα στη ζωή µου.” (which translates to “There are many important 
positive facts in my life.”) produces the following information. 
 

 

Υπάρχουν 
There are 

verb -- active plural present 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 22 - 

πολλά 
many 

adjective accusative neuter plural - 

σηµαντικά 
important 

adjective accusative neuter plural - 

θετικά 
positive 

adjective accusative neuter plural - 

γεγονότα 
facts 

noun accusative neuter plural - 

στη 
in 

article prepositional accusative feminine singular 

ζωή 
life 

noun accusative feminine singular - 

µου 
my 

noun genitive masculine singular - 

. punctuation - - - - 

 
Table 1. POS tagger example 

 
In order to optimize the system, POS information is extracted once per case, and the database 
is automatically updated for future use. See also section 4.6 for more details. 

4.4 English translation for sentiment analysis 
To achieve better results in sentiment analysis, a significant decision was made to avoid direct 
sentiment analysis in Greek language or French one, but translate texts in English and then 
evaluate the later one. This process, also helps make the system even more language 
independent by utilising a unified translation system, and then shifting the sentiment analysis 
problem to a different level. 
 
However, in order for this methodology to work, a third party translation service had to be used. 
After further investigation, we narrowed down to MyMemory service 
(https://mymemory.translated.net/), a free to use service. This translation service, uses both 
human and machine learning techniques for best results. MyMemory gives quick access to a 
large number of translations originating from professional translators, LSPs, customers and 
multilingual web content. It uses a powerful matching algorithm to provide the best translations 
available for the source text. Last but not least, we should mention that MyMemory currently 
contains professionally translated segments. System is constructed in a way to be modular in 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 23 - 

mind, and this is also the case for the translation submodule. In case there is any 
discontinuance of this service, we can easily switch to a different one, like the well known paid 
Google Translation API service. However, MyMerory was used for its simple API, free of charge 
pricing while providing translations of high quality results. 
 

4.5 Database self-validation 
As database management is one of the many steps to extract and create the frailty status 
prediction model, we had to be sure that all data stored should fulfill all the requirements for the 
next steps of analysis, which is data/text mining and will be performed by the free software 
WEKA (Eibe, Mark, Ian 20016). Having said that, it was of paramount importance for the 
created ARFF files (the WEKA-specific file format) to be always valid, avoid missing attributes or 
identify typos. So, a function was created for this purpose that reads all patient data and tries to 
identify discrepancies between saved data and expected classes. Finally, it also exports some 
basic statistical information, as were explained in detail in section 3.1  
 
 

4.6 Database auto-update 
In order to have a valid state of the database at all times, a library has been constructed in a 
way to always keep its internal structure useable and filled with all needed data. For this reason, 
specific functions have been created to check and update all patient data according to user 
standards. Function update_pos_info_everywhere() loads all patient data available from 
the database, and updates any missing POS data for new or updated rows. Also, function 
update_corpus_with_translations(), whenever called, will update the whole database 
with any missing english translations. The function has been constructed in a way to respect 
initial language as set in each patient data, which means that translation respects patient’s 
language. For example Greek to English for Greek patients and French to English for patients 
from France and so forth. 
 

5. Experiments and results 

5.1 Preproccessing 
Feature extraction 
 
The classification task of the mental state of a subject requires the deployment of machine 
learning and pattern recognition techniques. The basic requirement for these techniques is the 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 24 - 

processing of the organized patient data with feature extraction methods before the training and 
prediction procedures as can be viewed in fig. 7. Feature extraction starts from an initial set of 
measured data and builds derived values (features) intended to be informative and 
nonredundant, facilitating the subsequent learning and generalization steps, and in some cases 
leading to better human interpretations. Feature extraction involves reducing the amount of 
resources required to describe a large set of data. When performing analysis of complex data 
one of the major problems stems from the number of variables involved. Analysis with a large 
number of variables generally requires a large amount of memory and computation power, also 
it may cause a classification algorithm to overfit to training samples and generalize poorly to 
new samples. Feature extraction is a general term for methods of constructing combinations of 
the variables to get around these problems while still describing the data with sufficient 
accuracy. 
 

 
Figure 7. Training and prediction process 

 
The implemented feature extraction algorithm for the LingTester uses several extraction 
methods (see table 3). The first ones involve the standardization of the basic attributes of the 
collected data. For the features transcript, language, class and sex, which as their name 
suggests describe basic information from collected data, simple rules and correction algorithms 
have been applied in order for the extracted data to be distinctly formalized. 
 
Another categorization of feature extraction methods implemented uses statistical measures  for 
the written text of the subjects. Those measures include the text length, the number of 
sentences, the number of words per sentence and the text entropy. The text entropy, a measure 
of unpredictability of information content based on characters. 
 
Proceeding to more NLP specific techniques the term frequency–inverse document frequency 
(tf-idf) is used. Tf-idf is a numerical statistic that is intended to reflect how important a word is to 
a document in a corpus. It is used as a weighting factor in text mining. The tf-idf value increases 
proportionally to the number of times a word appears in the document, but is offset by the 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 25 - 

frequency of the word in the corpus, which helps to adjust for the fact that some words appear 
more frequently in general (Salton et al, 1983). To gain as much information as possible from 
this methodology, we utilised tf-idf twice. The first time is based in stemmed words, in order to 
avoid all suffixes. The second one, is based on POS data.This way, we could identify possible 
unigrams, or bigrams that are more frequent than other (for instance verb+adjective). 
Written text can be broadly categorized into two types: facts and opinions. Opinions carry 
people's sentiments, appraisals and feelings toward the world. The module(open source) that is 

used for sentiment analysis (sentiment within pattern.en) bundles a lexicon of adjectives 

(e.g., good, bad, amazing, irritating, ...) that occur frequently in product reviews, annotated with 

scores for sentiment polarity (positive ↔ negative) and subjectivity (objective ↔ subjective). 
Using the sentiment() function we gain polarity and subjectivity for the given sentence, 
based on the adjectives it contains, where polarity is a value between -1.0 and +1.0 and 
subjectivity between 0.0 and 1.0. 
 
A last preprocess step was to try and identify misspellings.  In order to base our work on open 
source or community based tools, we used the python pyenchant library combined with the 
OpenOffice speller dictionary. This speller, is widely used by thousands of users through 
OpenOffice applications like OpenOffice Writer, for multiple operating systems like Linux or 
Microsoft Windows and is easily accessible through a Python API. For our case, we extracted 
the number of misspelling words against all words per case. The following table summarizes all 
exported features. 

 

Feature Names Extraction Method 

Transcript, Language, Class, Sex Rules & Correction filters 

Text_length, Number_of_sentences, 
Number_of_words, 
Number_of_words_per_sentence, 
Text_entropy 

Statistical Measures 

Desc_image_ENG_sentiment, 
Desc_event_sentiment, 
Prev_text_ENG_sentiment 

Sentiment Analysis 

Tf-XX Term frequency – Inverse document 
frequency 

Tf-pos-XX Part of Speech analysis, using tf-idf 
methodology 

 
Table 2. Analysis of all extracted features 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 26 - 

 

5.2 Precision & Recall  
Feature selection 
 
The next step before proceeding to classification task is the feature selection task. Feature 
selection, also known as variable selection, attribute selection or variable subset selection, is 
the process of selecting a subset of relevant features (variables, predictors) for use in model 
construction. Feature selection techniques are used for three reasons: 
 

● simplification of models to make them easier to interpret by researchers/users,(Gareth, 
2013) 

● shorter training times, 
● enhanced generalization by reducing overfitting(formally, reduction of variance) 

 
The central premise when using a feature selection technique is that the data contains many 
features that are either redundant or irrelevant, and can thus be removed without incurring much 
loss of information(Bermingham, 2015). Redundant or irrelevant features are two distinct 
notions, since one relevant feature may be redundant in the presence of another relevant 
feature with which it is strongly correlated. 
 
A number of techniques have been proposed in the literature using algorithms and even 
classifiers for automating the process of feature selection. The most common algorithms are the 
exhaustive, best first (Pearl, 1984), simulated annealing (Khachaturyan, 1979) and the genetic 
algorithm (Mitchell, 1996). In practice, the task of feature selection is a highly empirical process 
where algorithms and human intelligence are combined in order to find the optimal subset of 
features, thus constructing the final feature set that will be used in the classification task. 
 
As a first approach to feature selection, a simple process has been followed. The first steps of 
the process involve an iteration of classifications where each individual feature was examined 
for its contribution to the accuracy of the temporary model, using the cross validation 
method(Geisser, 1993). After a sufficient number of iterations, the resulting decision tree was 
visualized and examined by hand in order to further optimize the resulting model. 
 
  Feature Selection Algorithm 

 
Input:  
Load the complete set of features (C) 
 
Count the number of all features (N) 
Classify with C and store the accuracy (A) 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 27 - 

Initialize pointer as zero (P) 
Loop for N 
 Remove C[P] 
 Classify with C (Ac) 

 If Ac < A 
      Restore C[P] 
 

Validate features by tree visualization 
 
Output: 
Subset of features (S) 

 
 
 

 
Figure 8. Decision tree based on C4.5 algorithm 

 
The final step of tree visualization was intentionally added in order to exploit a fundamental 
property of the way decision trees build their structure. In more detail, these models use the 
information gain (Mitchell, 1997) to rank and place the best contributing features on the top of 
the tree. Thus, it was possible to validate the importance of its selected feature, understand its 
contribution and remove the remaining non important features. 
 
Classification process 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 28 - 

The automatic classification of documents into predefined categories is an important field of 
active research, the documents can be classified by three classes of methods: 

● Unsupervised(Duda, 2001) methods, where no human intervention is required for 
labeling the collected data and the algorithms deployed are responsible for grouping the 
data to distinct categories.   

● Supervised methods, usually the human expertise is used for labeling each individual 
instance of the dataset. 

● Semi supervised methods, in this class of methods as little as possible human expertise 
is required to label a small initial amount of data and the algorithms exploit the existence 
of unlabeled data in order to enrich the training dataset.  

 
The last few years, the task of automatic text classification has been extensively studied and 
rapid progress seems in this area, the machine learning approaches include the use of 
classifiers like Bayesian classifier (Russel, 2003), Decision Tree, K-nearest Neighbors (KNN), 
Support Vector Machines (SVMs) (Cortes, 1995) and Neural Networks (McCulloch, 1943). 
 
As an essential part of the LingTester is the Frailty predictive model, the examination of the 
most common classifiers for text classification was conducted. The constructed dataset was 
used to feed the classifier using only the currently optimal features: 

● transcript 
● sex 
● number_of_words 
● text_entropy 
● desc_event_eng_sentiment 
● prev_text_eng_sentiment 
● desc_image_mispelled 
● desc_event_mispelled 
● class 

 
For the model evaluation, the well known cross validation technique was deployed.  Cross 
validation  assesses how the results of a statistical analysis will generalize to an independent 
dataset. It is mainly used in settings where the goal is prediction, and one wants to estimate 
how accurately a predictive model will perform in practice. Due to the lack of sufficient examples 
(only 111 labeled instances in the dataset), the common 10-fold cross validation approach was 
dropped and the Leave-one-out cross-validation (LOOCV) was used instead. In LOOCV is a 
particular case of leave-p-out cross-validation with p = 1, where a statistic on the left-out 
samples is computed.  
 
The next table summarises the accuracies obtained by the trained models, as can be seen in 
the table, the Decision Tree model scores the best results, thus it is selected as a first 
classification approach for the LingTester. 
 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 29 - 

Classifier Name Accuracy 

Decision Tree (C4.5) 62.16 % 

NaiveBayes 54.05 % 

K-Nearest Neighbours 61.26 % 

Support Vector Machines 31.35 % 

Neural Networks 61.92 % 

Table 3. Summary of classification algorithms 
 
Model optimization 
Before embedding the Decision Tree Classifier to the LingTester the final step of model 
parameter optimization was conducted using the Weka Data mining and Classification 
tool(Holmes, 1994). Specifically, the software enables the parameterization of the Decision Tree 
model using a series of eleven parameters, a table with the most important parameters and their 
description follows below. 
 

Parameter Name Description 

Binary splits Whether to use binary splits on nominal attributes when building the 
trees. 

Confidence factor The confidence factor used for pruning (smaller values incur more 
pruning). 

MinNumObj The minimum number of instances per leaf. 

Reduced Error 
Pruning 

Whether reduced-error pruning is used instead of C.4.5 pruning. 

Unpruned Whether pruning is performed. 

Use Laplace Whether counts at leaves are smoothed based on Laplace. 

Table 4. Parameterization of the Decision Tree model 
 
The process of model parameter optimization is a highly empirical process, although there have 
been some efforts in the field, for example Auto-Weka (Thornton, 2013). As this is a first 
approach of the classification task the simple strategy of test and recall has been followed. In 
order to improve the accuracy of LingTester the Train dataset was further investigated. In 
relation to its class (Non-frail, Pre-frail, Frail) it was judged as highly imbalanced as the Non-frail 
instances were only representing 12% of the class. For this reason a temporary decision was 
made to group the classes Non-frail and Pre-frail to restore the balance of the dataset until more 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 30 - 

data is collected by the other tasks. After the overall model optimization an astonishing 10% 
accuracy increase was achieved. Figure 9 and Table 5 present the model statistics and the 
optimized parameter values accordingly. 
 

 
Figure 9. Model statistics 

 

Parameter Name Parameter Value 

Binary splits False 

Confidence factor 0.25 

MinNumObj 2 

Reduced Error Pruning False 

Unpruned True 

Use Laplace False 

Table 5. Parameterization values of the Decision Tree model 
 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 31 - 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 32 - 

6. Conclusions 
The obtained accuracy of 72% by the common Decision Tree classifier seems promising and is 
a good starting point for the construction of more complex ensemble models. Although many of 
the state of the art techniques were implemented for the feature extraction process, they can not 
be exploited at the current phase of the project due to the small amount of collected data. As the 
dataset grows it is expected more features to contribute to the performance of the predictive 
model therefore a more capable and accurate model can be obtained and integrated to the 
FrailSafe user software package.  
 
The further reduction of features and the hyper-optimization of the model showed to have 
slightly better test performance but in practice is an overfit (Everitt, 2002) of the current dataset 
and it will probably lead to worse overall results as the dataset examples increase in the future. 
 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 33 - 

 

7. System development 

7.1 Software used for training and prediction 
Software development was based on various programming languages along with the use of 
third party tools, for both database management, creating models and predicting results. First 
steps of database management and export tools are based on Python (see Annex 12.1 
Database management & feature extraction), while the use of the prediction model is based on 
a Java implementation (see Annex 12.2 Prediction model). Both programming languages are 
operating system independent, meaning that upon successful installation of Python console for 
the first, and Java Virtual machine for the later, provided programmes may start processing. 
 
Furthermore, all third party tools within the discussed methodology should be provided. Firstly, 
the Greek POS tagger is a third party tool that needs Java Virtual Machine to run. It can be 
downloaded from the official site of Natural Language Processing Group at Department of 
Informatics - Athens University of Economics and Business (http://nlp.cs.aueb.gr/software.html). 
It is executed automatically from the Python script, whenever we request POS information for 
existing or new patient data. 
 
For the classification process WEKA  suite was used. Weka is a collection of machine learning 
algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or 
called from your own Java code. Weka contains tools for data pre-processing, classification, 
regression, clustering, association rules, and visualization. It is also well-suited for developing 
new machine learning schemes. In the following section, we discuss steps to reproduce all 
installations steps. 

7.2 Installation notes for training and prediction 
Extra steps must be carried out so as for all submodules to work correctly, for the current state 
of LingTester. While the following submodules are platform independent, this doesn’t mean that 
steps are also the same. Each platform may request different dependencies, but this analysis 
will assume Linux as the underlying operating system. These are the main parts: 

● Python core and Python modules 
● Java Virtual Machine 
● POS Tagger 
● OpenOffice dictionaries 
● Weka 

 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 34 - 

7.2.1 Python core and Python modules 
Python is preinstalled in all Linux distros. However, we must install some extra modules. The 
following modules can be easily installed using the pip package, by issuing a command of 
type sudo pip install {module} for each module. These instructions are also described 
within the source code. The modules are: 

1. pyenchant, for the translation service 
2. httplib2, to request access to the MyMemory service through http protocol 
3. nltk, to export tf-idf features 
4. pattern, to export sentiment features in english 

 

7.2.2 Java Virtual Machine (JVM) 
In order to download and install the Java Virtual Machine, user must navigate to the download 
page1, click Download and execute the downloaded file. Installation will automatically finalise. 
JVM is needed in order to execute both the ready made model and the POS tagger, in case it is 
needed for new data. 
 

7.2.3 POS Tagger 
POS tagger is available for download from the official page2. Assuming JVM works as expected, 
downloading and installing all files as stated in the readme file from the downloaded archive is 
all that is needed to have access to this service. 
 

7.2.4 OpenOffice dictionaries 
While pyechant python module gives access to the speller of OpenOffice, we have to install 
the speller for each language, in case it is not already installed. In Linux, we can install new 
dictionaries by issuing in the command line the command sudo apt-get install 

myspell-gr-el. In case we have a different package manager, we issue the install command 
for the myspell-gr-el package. 
 

7.2.5 Weka 
We can easily download and install WEKA by navigating to the page official3 and 
following the detailed steps in that page, according to our operating system. 

                                                
1 https://www.java.com/en/ 
2 http://nlp.cs.aueb.gr/software.html 
3 http://www.cs.waikato.ac.nz/ ml/weka/downloading.html 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 35 - 

8. Frailsafe user software 

8.1 Steps to import new data 
There are two reasons to import new data within our offline database. First one is to populate 
new training data and reconstruct the prediction model, a process which cannot be done outside 
laboratory or by non technical persons. The reason for this, is that a full installation of WEKA is 
needed along with various parameters that make this procedure not feasible for everyday use. 
The second reason is to use the model that has already been trained and exported for easy use 
(see next chapter). For this to work, we execute the secondary file offline-parser-ui.py through 
the console, python offline-parser-ui.py, and the following menu appears: 

1. Validate corpus and print statistics: This option goes through each patient data, and 
validates there are no missing or not accepted information 

2. Print all patient data: This option requests a patient id from the user, and dumps all 
patient data within the console for easy access. 

3. Create new patient data: This option will start by asking the ID of the new patient data 
and in case this ID already exists, then an error is shown to the user and he has to start 
over. This validation is needed in order to avoid overwriting existing data by accident. 

4. Update database with missing translations: As the name suggests, this option will 
automatically update any missing translations 

5. Update database with missing POS data: Also, as the name suggests, this will update 
whole database with any missing POS data for future use. 

6. Export patient data for prediction: This option requests a patient id from the user and 
then creates the ARFF that is needed in order for the prediction model to work correctly 
(see next chapter). 

7. Exit: This will force for the application to terminate 
 
As this tool, is also Python based, it is cross-platform. However, this doesn’t mean it can work 
out of the box. Extra steps need to be done in order for all submodule operate normally (See 
Installation Notes, under System development chapter). 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 36 - 

 
Figure 10. Screenshot of real time operation 

8.2 Steps to export results 
In order to for the FrailSafe user to obtain predictions for a number of subjects, a java software 
package was developed. The official name of the package is Predictor due to the task assigned 
to it.  
 
The Predictor is a cross-platform command line tool that expects as input an arff file containing 
the pre-processed collected data of the subjects exported by the user using the Offline-parser-ui 
tool. Currently only the default ``in.arff’’ can be used and Predictor expects it in the current 
working directory. An example input file structure is presented in the following figure.  
 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 37 - 

 
 

 
Figure 11. Input file structure 

 
In order for the Predictor not be computationally expensive, the training of the classifier at 
runtime of the tool was intentionally avoided. Instead, a pre-computed model of the classifier is 
delivered with the software package and is loaded by the tool. 
 
The detailed program algorithm of the Predictor tool is presented below. 
 
 Predictor tool algorithm 

 
 Input:  

Load the pretrained model (M) 
Load the Test dataset (T) 
 
Count the number of test instances (N) 
Loop for N 
 Predict Instance T(i) 
 Print prediction for T(i) 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 38 - 

 
 
Software tool usage instructions: 

1. Open a terminal inside the deliverables root directory 
2. Run the command java -jar predictor-cli.jar 

 
Notes: The user’s system should use java version 1.6.0 or higher. 

It is recommended to use the -Xmx2g java parameter if the input arff file has      more 
than a few thousand instances. 

Figure 12. Screenshot of prediction programme while executing 
 
 
 
 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 39 - 

 

9. Future improvements for the Prototype 
A series of improvements is expected to improve the overall performance, add more predictive 
capabilities and improve the LingTester user experience. More specifically, on the subject of 
data collection, management and dataset exportation, a number of actions like the offline 
database population with new collected data, the features evaluation against a different input 
language (French language) and the optimization and bug fix of current features and feature 
extraction methodology is expected to improve the quality of the train dataset. On the subject of 
the classification task, the future research includes the exhaustive research on feature selection 
methodologies, the experimentation on supervised ensemble classifier models and the 
deployment of semi-supervised (Chapelle, 2006) techniques in order enhance the small 
available dataset with a bigger unlabeled (Ratsaby, 1995) dataset. Moreover, two new areas of 
research are going to be explored, the detection of suicidal statements and the patient mental 
state transition in time. 
 
To benefit the end user of LingTester and simplify the prediction process, the integration of the 
two software tools, presented in section 8, in a complete and all inclusive software package will 
be implemented. 

 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 40 - 

 

10. Ethics and Safety 
 
Throughout this study’s methodology, special care has been taken for ethical and safety issues. 
Τhe nature of the study requires the processing, storing and analysis of a large amount of data. 
In all these stages, confidentiality and personal data protection will be reassured by an 
anonymization procedure. Each participant is traced solely by his/her ID, provided initially by the 
recruitment center, a number and only this, with no identifiable personal data, will be exposed to 
large scale data exchange like name, date of birth, place of living. Access to the database have 
only specific people, researchers, in order to create the prediction models. 
 
The data persistence and analysis will comply with the data protection guidelines reported in 
deliverable "D9.9: Ethics, Safety and Health Barriers" (Section 6) with the aim of, at same time, 
keeping the maximum level of security and privacy of the data and allowing the successful 
performance of the other tasks of the project. Moreover, data will be obtained in accordance to 
the local ethics requirements. Any information regarding the participants will be treated as 
sensitive personal data (as defined in deliverable D9.9) and kept strictly private. Future provided 
data will be thoroughly checked by semi-automatic algorithms in order to anonymize any 
personal identifiers like full names, dates, emails, communication cellphone or landline numbers 
– hence falling outside the scope of legislation concerning personal data. 
 
 
 
 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 41 - 

 

11. References 
 

● A survey of text classification algorithms CC Aggarwal, CX Zhai - Mining text data, 2012 
- Springer 

● Gerard Salton, Edward A. Fox, and Harry Wu. 1983. Extended Boolean information 
retrieval. Commun. ACM 26, 11 (November 1983), 1022-1036. 
DOI=http://dx.doi.org/10.1145/182.358466 

● Eibe, F., Mark, A. Hall, and Ian, H. Witten (2016). The WEKA Workbench. Online 
Appendix for "Data Mining: Practical Machine Learning Tools and Techniques", Morgan 
Kaufmann, Fourth Edition, 2016. 

● K. Denecke, "Using SentiWordNet for multilingual sentiment analysis," Data Engineering 
Workshop, 2008. ICDEW 2008. IEEE 24th International Conference on, Cancun, 2008, 
pp. 507-512. doi: 10.1109/ICDEW.2008.4498370 

● Koleli, E. A new Greek part-of-speech tagger, based on a maximum entropy classifier. 
Diss. Thesis, Athens University of Economics, 2011. 

● Tsakalidis, A., Papadopoulos, S. and Kompatsiaris I. (2014) An Ensemble Model for 
Cross-Domain Polarity Classification on Twitter. Proceedings of 15th International 
Conference on Web Information Systems Engineering (WISE 2014), LNCS, Part II, pp. 
168-177, Thessaloniki, Greece, October 12-14, 2014, Springer 

● Gareth James; Daniela Witten; Trevor Hastie; Robert Tibshirani (2013). An Introduction 
to Statistical Learning. Springer. 

● Bermingham, Mairead L.; Pong-Wong, Ricardo; Spiliopoulou, Athina; Hayward, Caroline; 
Rudan, Igor; Campbell, Harry; Wright, Alan F.; Wilson, James F.; Agakov, Felix; 
Navarro, Pau; Haley, Chris S. (2015). "Application of high-dimensional feature selection: 
evaluation for genomic prediction in man". Sci. Rep. 

● Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving. 
Addison-Wesley, 1984. 

● Khachaturyan, A.; Semenovskaya, S.; Vainshtein, B. (1979). "Statistical-Thermodynamic 
Approach to Determination of Structure Amplitude Phases". Sov.Phys. Crystallography. 

● Mitchell, Melanie (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT 
Press. 

● Geisser, Seymour (1993). Predictive Inference. New York, NY: Chapman and Hall. 
● Mitchell, Tom M. (1997). Machine Learning. The Mc-Graw-Hill Companies, Inc. 
● Duda, Richard O.; Hart, Peter E.; Stork, David G. (2001). "Unsupervised Learning and 

Clustering". Pattern classification (2nd ed.). Wiley. 
● Russell, Stuart; Norvig, Peter (2003) [1995]. Artificial Intelligence: A Modern Approach 

(2nd ed.). Prentice Hall. 
● Cortes, C.; Vapnik, V. (1995). "Support-vector networks". Machine Learning. 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 42 - 

● McCulloch, Warren; Walter Pitts (1943). "A Logical Calculus of Ideas Immanent in 
Nervous Activity". Bulletin of Mathematical Biophysics. 

● G. Holmes; A. Donkin; I.H. Witten (1994). «Weka: A machine learning workbench». Proc 
Second Australia and New Zealand Conference on Intelligent Information Systems, 
Brisbane, Australia. 

● Chris Thornton, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown, Auto-WEKA: 
Combined Selection and Hyperparameter Optimization of Classification Algorithms. In 
Proc. of KDD 2013 

● Everitt B.S. (2002) Cambridge Dictionary of Statistics, CUP. 
● Chapelle, Olivier; Schölkopf, Bernhard; Zien, Alexander (2006). Semi-supervised 

learning. Cambridge, Mass.: MIT Press. 
● Ratsaby, J. and Venkatesh, S. Learning from a mixture of labeled and unlabeled 

examples with parametric side information. In Proceedings of the Eighth Annual 
Conference on Computational Learning Theory, pages 412-417 (1995). 

 
 
 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 43 - 

 

12. Source files 
These are the files that accompany this deliverable: 

● Folder: demo 
○ File: frailsafe.model 

■ Pre-trained prediction model 
○ File: in.arff 

■ Test input data. This is a text file structured like figure 11. For more 
details, please see chapter 8.1 

○ File: predictor-cli.jar 
■ This java software uses the pre-trained prediction model in order to 

predict patients' mental state from test data found in file in.arff(6 patients' 
test data after feature extraction). 

○ File: README.txt 
■ Readme file of how to execute the java file 

● Folder: source code 
○ File: PredictorCLI.java 

■ Source code of the demo predictor-cli.jar file 
○ File: offline-parser.py 
○ File: offline-parser-ui.py 

■ Source file in Python that manage the offline database while also support 
the feature extraction process 

 
 

 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 44 - 

 

13. Annexes 

13.1 Database management & feature extraction 
The following are the contents of the base Python library with various functions that help utilise 
the offline database in its full extent. 

1. #	-*-	coding:	utf-8	-*-		 
2. """	 
3. 	 
4. @author:	Charalampos	Tsimpouris	 
5. @author:	Nikolaos	Fazakis	 
6.  
7. 	 
8. """		 
9. 		 
10. #	To	install	execute:	pip	install	pyenchant		 
11. import	enchant		 
12. 		 
13. #	To	install	execute:	pip	install	httplib2		 
14. import	httplib2		 
15. import	json		 
16. import	math		 
17. 		 
18. #	To	install	execute:	pip	install	nltk		 
19. import	nltk		 
20. 		 
21. import	os		 
22. import	pickle		 
23. 		 
24. #	To	install	execute:	pip	install	pattern		 
25. from	pattern.en.wordnet	import	sentiment		 
26. 		 
27. import	stemming		 
28. import	shutil		 
29. import	subprocess		 
30. 		 
31. #	py-translate	Cannot	work		 
32. #	it	uses,	free	google	services	and	is	easilly	blocked		 
33. #	import	translate		 
34. 		 
35. #	Google	API		 
36. #	cannot	be	used,	only	with	billing	plans		 
37. #from	google.cloud	import	translate		 
38. 		 
39. import	warnings		 

40. from	sklearn.feature_extraction.text	import	
TfidfVectorizer		 

41. 		 
42. #	This	is	the	path	where	all	patient	data	is	stored		 
43. #	..	one	file	per	patient,	with	file	name	from	the	

patient	id		 
44. data_path	=	'./Data'		 
45. 		 
46. frailsafe_google_api_key	=	'???????'		 
47. 		 
48. #	MyMemory	Translation		 
49. #	..	these	are	basic	settings	for	the	translation	

service		 
50. mymemory_account_email	=	'kifinas.uop@gmail.com'		 
51. mymemory_base_url	=	

u'http://api.mymemory.translated.net/get'		 
52. 		 
53. #	These	tags	must	always	exist		 
54. #	..	along	with	the	availiable	tags		 
55. #	..	and	they	are	class	tags		 
56. verify_tags	=	{}		 
57. verify_tags['-transcript']	=	('yes',	'no',	'na')		 
58. verify_tags['-sex']	=	('male',	'female')		 
59. verify_tags['-tag']	=	('nonfrail',	'prefrail',	

'frail',	'na')		 
60. verify_tags['-language']	=	('greek',	'greek-

polytonic',	'french',	'greek-cypriot')		 
61. 		 
62. #	Languge	convert	helper	dictionaries	for	various	

reasons		 
63. langs	=	{}		 
64. langs['greek']	=	'el'		 
65. langs['greek-polytonic']	=	'el'		 
66. langs['french']	=	'fr'		 
67. langs['greek-cypriot']	=	'el-cy'		 
68. 		 
69. langs_speller	=	{}		 
70. langs_speller['greek']	=	'el_GR'		 
71. langs_speller['greek-polytonic']	=	'el_GR'		 
72. langs_speller['french']	=	'fr'		 
73. langs_speller['greek-cypriot']	=	'el_GR'		 
74. 		 
75. #	These	tags	are	multi	line		 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 45 - 

76. #	..	and	make	the	multi	text	that	we	try	to	classify	
from		 

77. multi_line_tags					=	['-desc_image',					'-
desc_event',					'-prev_text']		 

78. 		 
79. #	Part	of	speech	info,	in	case	there	is	one		 
80. multi_line_tags_POS	=	['-desc_image_POS',	'-

desc_event_POS',	'-prev_text_POS']		 
81. 		 
82. #	English	translation	of	the	initial	text		 
83. multi_line_tags_ENG	=	['-desc_image_ENG',	'-

desc_event_ENG',	'-prev_text_ENG']		 
84. 		 
85. def	split_list():		 
86. 				"""This	function	tries	to	split	the	main	initial	

patient	 
87. 								list	in	a	simplistic	way.	 
88. 								Caution,	detroyes	existing	data.	 
89. 				"""		 
90. 				f	=	open(data_path	+	'/lists.txt',	'r')		 
91. 				lines	=	f.readlines()		 
92. 				f.close()		 
93. 						 
94. 				patients	=	{}		 
95. 				for	line	in	lines:		 
96. 								if	not	line.startswith('-patient'):		 
97. 												continue		 
98. 										 
99. 								tag,	pid	=	line.strip().split('	')		 
100. 								if	pid	in	patients:		 
101. 												print	"Patient	%s	already	set"	

%	pid		 
102. 												print	"Aborting"		 
103. 												return		 
104. 								patients[	pid	]	=	line		 
105. 		 
106. 						 
107. 				cpid	=	None		 
108. 				pdata	=	[]		 
109. 						 
110. 				for	line	in	lines:		 
111. 								line	=	line.strip()		 
112. 										 
113. 								if	line.startswith('-patient'):		 
114. 												if	cpid	is	not	None:		 
115. 																f	=	open(data_path	+	

'/p.%s.txt'	%	cpid,	'w')		 
116. 																

f.write("\n".join(pdata).strip()	+	"\n")		 
117. 																f.close()		 
118. 																		 
119. 												pdata	=	[]		 
120. 												tag,	cpid	=	

line.strip().split('	')		 
121. 										 

122. 								pdata.append(line)		 
123. 		 
124. 				if	cpid	is	not	None:		 
125. 								f	=	open(data_path	+	'/p.%s.txt'	%	

cpid,	'w')		 
126. 								f.write("\n".join(pdata).strip()	+	

"\n")		 
127. 								f.close()		 
128. 										 
129. def	fetch_patient_ids():		 
130. 				"""Identifies	all	patient	ids,	as	

stated	in	the	filenames	 
131. 				"""		 
132. 				files	=	os.listdir(data_path)		 
133. 				out_files	=	[]		 
134. 				for	f	in	files:		 
135. 								if	not	f.startswith('p.')	or	not	

f.endswith('.txt'):		 
136. 												continue		 
137. 										 
138. 								pre,	pid,	suf	=	

f.strip().split('.')		 
139. 								out_files.append(pid)		 
140. 						 
141. 				out_files.sort()		 
142. 				return	out_files		 
143. 		 
144. def	fetch_patient_data(cpid):		 
145. 				"""Tries	to	load	all	patient	data,	

based	on	the	id	 
146. 				"""		 
147. 				try:		 
148. 								f	=	open(data_path	+	'/p.%s.txt'	%	

cpid,	'r')		 
149. 								lines	=	f.readlines()		 
150. 								f.close()		 
151. 				except:		 
152. 								print	'Error	opening	patient	data	

file	%s'	%	cpid		 
153. 								return	{}		 
154. 						 
155. 				ret	=	{}		 
156. 				ctag	=	None		 
157. 				for	line	in	lines:		 
158. 								line	=	line.strip()		 
159. 								if	line.startswith('-'):		 
160. 												if	ctag:		 
161. 																ret[ctag]	=	

ret[ctag].strip()		 
162. 														 
163. 												if	line.find('	')	>	0:		 
164. 																ctag	=	line[:line.find('	

')].strip()		 
165. 																info	=	line[line.find('	

')+1:].strip()		 
166. 												else:		 
167. 																ctag	=	line		 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 46 - 

168. 																info	=	''		 
169. 												ret[ctag]	=	''		 
170. 												ret[ctag]	+=	info		 
171. 												continue		 
172. 										 
173. 								ret[ctag]	+=	line	+	"\n"		 
174. 				if	ctag:		 
175. 								ret[ctag]	=	ret[ctag].strip()		 
176. 						 
177. 				return	ret		 
178. 		 
179. def	save_patient_data(cpid,	cpdata):		 
180. 				"""Saves	all	patient	data	in	a	file	 
181. 				"""		 
182. 				f	=	open(data_path	+	'/p.%s.txt'	%	

cpid,	'w')		 
183. 						 
184. 				cpdata['-patient']	=	cpid		 
185. 						 
186. 				for	tag	in	cpdata:		 
187. 								if	cpdata[tag]	is	None:		 
188. 											cpdata[tag]	=	''		 
189. 													 
190. 								if	tag	in	multi_line_tags	or	tag	in	

multi_line_tags_POS	or	tag	in	multi_line_tags_ENG:		 
191. 												f.write("%s\n\n"	%	tag)		 
192. 												f.write("%s\n\n"	%	

cpdata[tag].strip())		 
193. 												continue		 
194. 										 
195. 								f.write("%s	%s\n"	%	(tag,	

str(cpdata[tag]).strip()))		 
196. 				f.close()		 
197. 				return	cpdata		 
198. 		 
199. def	print_patient_data(pdata):		 
200. 				"""Tries	to	print	all	patient	data,	as	

beautiful	as	it	can	 
201. 				"""		 
202. 				for	k	in	pdata:		 
203. 								print	'%s:%s'	%	(k,	pdata[k])		 
204. 		 
205. def	validate_patient_data():		 
206. 				"""Validates	there	are	no	missing	tags	 
207. 								in	all	patient	files,	around	the	

required	ones	 
208. 								Also,	it	tries	to	print	some	minor	

statistics	 
209. 				"""		 
210. 				pids	=	fetch_patient_ids()		 
211. 		 
212. 				stats	=	{}						 
213. 				for	cpid	in	pids:		 
214. 								cpdata	=	fetch_patient_data(cpid)		 

215. 										 
216. 								for	t	in	verify_tags:		 
217. 												valid	=	verify_tags[t]		 
218. 												if	not	t	in	cpdata	or	cpdata[t]	

is	None	or	cpdata[t]	==	'':		 
219. 																print	'Patient	%s	is	

missing	%s	data'	%	(cpid,	t)		 
220. 																continue		 
221. 		 
222. 												if	cpdata[t]	not	in	valid:		 
223. 																print	'Patient	%s	has	

invalid	%s	data	%s'	%	(cpid,	t,	cpdata[t])		 
224. 																continue		 
225. 														 
226. 												if	not	t	in	stats:		 
227. 																stats[t]	=	{}		 
228. 												stats[t][	cpdata[t]	]	=	

stats[t].get(cpdata[t],	0)	+	1		 
229. 						 
230. 				print	'Checked	%d	patients,	and	here	

are	the	statistics'	%	len(pids)		 
231. 				for	t	in	verify_tags:		 
232. 								valid	=	verify_tags[t]		 
233. 										 
234. 								print	t		 
235. 								for	k	in	valid:		 
236. 												print	'		%s:%d'	%	(k,	

stats[t].get(k,	0))		 
237. 		 
238. def	temp_change_tags():		 
239. 				"""Makes	a	change	of	tags,	after	

initial	estimation	 
240. 							Temporary	function	 
241. 				"""		 
242. 				pids	=	fetch_patient_ids()		 
243. 		 
244. 				for	cpid	in	pids:		 
245. 								cpdata	=	fetch_patient_data(cpid)		 
246. 								if	'-desc_image'	not	in	cpdata:		 
247. 												cpdata['-desc_image']	=	

cpdata.get('-perigrafi_eikonas',	'')		 
248. 												del	cpdata['-

perigrafi_eikonas']		 
249. 		 
250. 								if	'-desc_event'	not	in	cpdata:		 
251. 												cpdata['-desc_event']	=	

cpdata.get('-perigrafi_gegonotos',	'')		 
252. 												del	cpdata['-

perigrafi_gegonotos']		 
253. 										 
254. 								save_patient_data(cpid,	cpdata)		 
255. 		 
256. def	clean_up_text(text,	lang	=	'english'):		 
257. 				"""Tries	to	clean	up	text,	as	much	as	

possible	 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 47 - 

258. 								in	some	ways	language	
inndipendantly	 

259. 								in	some	ways	not	 
260. 				"""		 
261. 				new_list	=	[]		 
262. 		 
263. 				text	=	text.replace('.',	'.	')		 
264. 				#	Minor	clean	up	per	language		 
265. 				if	lang.startswith('greek'):		 
266. 								text	=	clean_greek_letters(text)		 
267. 				elif	lang	==	'french':		 
268. 								text	=	clean_french_letters(text)		 
269. 		 
270. 				text	=	upper(text)		 
271. 						 
272. 				words	=	get_words(text)		 
273. 				for	w	in	words:		 
274. 								if	len(w)	<=	3:		 
275. 												continue		 
276. 										 
277. 								w	=	stemming.stem(w)		 
278. 										 
279. 								new_list.append(w)		 
280. 		 
281. 				return	'	'.join(new_list)		 
282. 		 
283. def	create_arff(relation	=	'fraildata'):		 
284. 				"""Create	arff	for	WEKA	with	all	

features	availiable	 
285. 				"""		 
286. 				pids	=	fetch_patient_ids()		 
287. 						 
288. 				out	=	[]		 
289. 				out.append('@RELATION	%s'	%	relation)		 
290. 				out.append('')		 
291. 						 
292. 				basic_tags	=	[]		 
293. 				for	t	in	verify_tags:		 
294. 								basic_tags.append(t)		 
295. 								valid	=	verify_tags[t]		 
296. 								tag	=	t.lstrip('-')		 
297. 								if	tag	==	'tag':		 
298. 												tag	=	'class'		 
299. 												valid	=	('nonfrail',	

'prefrail',	'frail')		 
300. 								out.append('@ATTRIBUTE	%s	{%s}'	%	

(tag,	','.join(valid)))		 
301. 						 
302. 				other_attributes	=	[]		 
303. 				

other_attributes.append('get_feature_length')		 
304. 				

other_attributes.append('get_feature_number_of_sentenc
es')		 

305. 				
other_attributes.append('get_feature_word_count')		 

306. 				
other_attributes.append('get_feature_words_per_sentenc
e')		 

307. 				
other_attributes.append('get_feature_text_shannon_entr
opy')		 

308. 				for	attr	in	other_attributes:		 
309. 							out.append('@ATTRIBUTE	%s	%s'	%	

(globals()[attr]('',	'title'),	globals()[attr]('',	
'type')))		 

310. 						 
311. 				for	tag	in	multi_line_tags_ENG:		 
312. 								out.append('@ATTRIBUTE	%s	%s'	%	

(tag.lstrip('-')	+	'_sentiment',	'real'))		 
313. 		 
314. 				for	tag	in	multi_line_tags:		 
315. 								out.append('@ATTRIBUTE	%s	%s'	%	

(tag.lstrip('-')	+	'_misspelled',	'real'))		 
316. 		 
317. 				corpus	=	get_corpus()		 
318. 						 
319. 				labels	=	[]		 
320. 				texts	=	[]		 
321. 				text_POS	=	[]		 
322. 				for	cpid	in	corpus:		 
323. 								labels.append(cpid)		 
324. 								

texts.append(corpus[cpid]['clean_text'])		 
325. 		 
326. 								pos_data	=	

pos_explode_data(corpus[cpid]['text_POS'])		 
327. 								temp_pos_as_text	=	[]		 
328. 								#	ta	panta	ola		 
329. 								for	word,	ps	in	pos_data:		 
330. 												

temp_pos_as_text.append('8'.join(ps))		 
331. 										 
332. 								#	1:1	mono	ta	prwta		 
333. 								for	word,	ps	in	pos_data:		 
334. 												temp_pos_as_text.append(ps[0])		 
335. 		 
336. 								#	1:1	mono	ta	prwta/deftera		 
337. 								for	word,	ps	in	pos_data:		 
338. 												

temp_pos_as_text.append('8'.join(ps[0:1]))		 
339. 		 
340. 								#	1:1	mono	ta	prwta/deftera/trita		 
341. 								for	word,	ps	in	pos_data:		 
342. 												

temp_pos_as_text.append('8'.join(ps[0:2]))		 
343. 		 
344. 								#	1:1	mono	ta	deftera		 
345. 								for	word,	ps	in	pos_data:		 
346. 												temp_pos_as_text.append(ps[0])		 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 48 - 

347. 		 
348. 								#	1:1	mono	ta	trita		 
349. 								for	word,	ps	in	pos_data:		 
350. 												temp_pos_as_text.append(ps[0])		 
351. 		 
352. 								text_POS.append('	

'.join(temp_pos_as_text).replace('-',	''))		 
353. 					 
354. 				#	TF-IDF	on	POS	data		 
355. 				tf_POS	=	

TfidfVectorizer(analyzer='word',	ngram_range=(1,2),	
min_df	=	0)		 

356. 				tfidf_matrix_POS	=		
tf_POS.fit_transform(text_POS)		 

357. 				feature_names_POS	=	
tf_POS.get_feature_names()			 

358. 						 
359. 				for	i	in	range(len(feature_names_POS)):		 
360. 								out.append('@ATTRIBUTE	tf-pos-%d	

real	%%	%s'	%	(i,	'POS:	'	+	feature_names_POS[i]))		 
361. 				dense_POS	=	tfidf_matrix_POS.todense()		 
362. 		 
363. 				#	TF-IDF	on	stemmed	text		 
364. 				tf	=	TfidfVectorizer(analyzer='word',	

ngram_range=(1,2),	min_df	=	0)		 
365. 				tfidf_matrix	=		tf.fit_transform(texts)		 
366. 				feature_names	=	tf.get_feature_names()			 
367. 						 
368. 				for	i	in	range(len(feature_names)):		 
369. 								out.append('@ATTRIBUTE	tf-%d	real	

%%	%s'	%	(i,	feature_names[i]))		 
370. 				dense	=	tfidf_matrix.todense()		 
371. 		 
372. 				out.append('')		 
373. 				out.append('@DATA')		 
374. 										 
375. 				for	i	in	range(len(labels)):		 
376. 								cpid	=	labels[i]		 
377. 										 
378. 								#	Patients	with	inknown	frailty	tag	

are	automatically	removed		 
379. 								if	not	'-tag'	in	

corpus[cpid]['data']	or	corpus[cpid]['data']['-tag']	
==	'na':		 

380. 												print	"Skipping	patient	with	ID	
%s:	missing	frailty	tag"	%	cpid		 

381. 												continue		 
382. 										 
383. 								row	=	[]		 
384. 								for	bt	in	basic_tags:		 
385. 												row.append(	

corpus[cpid]['data'].get(bt,	'na')	)		 
386. 										 
387. 								for	attr	in	other_attributes:		 
388. 												clang	=	corpus[cpid]['data']['-

language']		 

389. 														 
390. 												#	To	absorb	all	Greek	

variations														 
391. 												if	clang.startswith('greek'):		 
392. 																clang	=	'greek'		 
393. 														 
394. 												

row.append(str(globals()[attr](corpus[cpid]['text'],	
lang	=	clang)))		 

395. 		 
396. 								#	Sentiment	score	is	based	in	the	

english	translation		 
397. 								for	tag	in	multi_line_tags_ENG:		 
398. 												

row.append(get_feature_sentiment_score(corpus[cpid]['d
ata'].get(tag,	'')))		 

399. 						 
400. 								for	tag	in	multi_line_tags:		 
401. 												

row.append(get_feature_mispelling_score(corpus[cpid]['
data'].get(tag,	''),	lang	=	clang))		 

402. 						 
403. 								#	tf-idf	info	based	on	POS	data		 
404. 								p_POS	=	dense_POS[i].tolist()[0]		 
405. 								for	fi	in	

range(len(feature_names_POS)):		 
406. 												row.append('%.3f'	%	p_POS[fi])		 
407. 										 
408. 								#	tf-idf	based	on	stemmed	data		 
409. 								p	=	dense[i].tolist()[0]		 
410. 								for	fi	in	

range(len(feature_names)):		 
411. 												row.append('%.3f'	%	p[fi])		 
412. 										 
413. 								out.append(','.join(row))		 
414. 						 
415. 				filename	=	'ARFFS/%s.arff'	%	relation		 
416. 				f	=	open(filename,	'w')		 
417. 				f.write("\n".join(out).encode('utf8'))		 
418. 				f.close()		 
419. 						 
420. 				print	'Saved	at	%s.'	%	filename		 
421. 						 
422. def	get_corpus():		 
423. 				"""Returns	all	corpus	in	a	more	

scientific-friendly	way	 
424. 				"""		 
425. 				pids	=	fetch_patient_ids()		 
426. 						 
427. 				corpus	=	{}		 
428. 						 
429. 				for	cpid	in	pids:		 
430. 								cpdata	=	fetch_patient_data(cpid)		 
431. 								corpus[cpid]	=	{}		 
432. 								corpus[cpid]['data']	=	cpdata		 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 49 - 

433. 								corpus[cpid]['tag']	=	cpdata['-
tag']		 

434. 										 
435. 								corpus[cpid]['text']	=	''		 
436. 								for	m	in	multi_line_tags:		 
437. 												corpus[cpid]['text']	+=	

cpdata.get(m,	'	')		 
438. 								corpus[cpid]['text']	=	

corpus[cpid]['text'].strip()		 
439. 		 
440. 								corpus[cpid]['text_POS']	=	''		 
441. 								for	m	in	multi_line_tags_POS:		 
442. 												corpus[cpid]['text_POS']	+=	

"\n"	+	cpdata.get(m,	'	')		 
443. 		 
444. 								corpus[cpid]['text_ENG']	=	''		 
445. 								for	m	in	multi_line_tags_ENG:		 
446. 												corpus[cpid]['text_ENG']	+=	

"\n"	+	cpdata.get(m,	'	')		 
447. 		 
448. 								clang	=	corpus[cpid]['data']['-

language']		 
449. 										 
450. 								#	To	absorb	all	Greek	variations														 
451. 								if	clang.startswith('greek'):		 
452. 												clang	=	'greek'		 
453. 		 
454. 								tutf8	=	

corpus[cpid]['text'].decode('utf-8')		 
455. 								corpus[cpid]['clean_text']	=	

clean_up_text(tutf8,	clang)		 
456. 										 
457. 				return	corpus		 
458. 		 
459. def	get_feature_length(text,	meta	=	None,	

lang	=	'english'):		 
460. 				if	meta	==	'title':		 
461. 								return	'text_length'		 
462. 				if	meta	==	'type':		 
463. 								return	'integer'		 
464. 						 
465. 				return	len(text)		 
466. 		 
467. def	get_sentences(text,	lang	=	'english'):		 
468. 				"""This	should	be	language	dependant	to	

be	more	precise	 
469. 				"""		 
470. 				sent_tok_file	=	

"greek.law.utf8.70.pickle"		 
471. 		 
472. 				f	=	open(sent_tok_file)		 
473. 				sent_tokenizer	=	pickle.load(f)		 
474. 				f.close()		 
475. 		 

476. 				return	
sent_tokenizer.tokenize(text.decode('utf8'))		 

477. 		 
478. def	get_feature_number_of_sentences(text,	

meta	=	False,	lang	=	'english'):		 
479. 				"""Returns	a	feature	with	number	of	

sentences	 
480. 				TODO:	This	has	to	be	more	elaborate	 
481. 				"""		 
482. 				if	meta	==	'title':		 
483. 								return	'number_of_sentences'		 
484. 				if	meta	==	'type':		 
485. 								return	'integer'		 
486. 						 
487. 				return	len(get_sentences(text,	lang))		 
488. 		 
489. def	get_words(text,	lang	=	'english'):		 
490. 				"""Splits	text	in	words	 
491. 				"""		 
492. 				word_tokenizer	=	

nltk.WhitespaceTokenizer()		 
493. 						 
494. 				#	Word	tokenizer,	auto	parses	sentences		 
495. 				#	..so	no	need	to	split	in	sentences		 
496. 				return	word_tokenizer.tokenize(text)		 
497. 		 
498. def	get_feature_word_count(text,	meta	=	

False,	lang	=	'english'):		 
499. 				"""Returns	a	feature	with	number	of	

words	 
500. 				TODO:	This	has	to	be	more	elaborate	 
501. 				"""		 
502. 				if	meta	==	'title':		 
503. 								return	'number_of_words'		 
504. 				if	meta	==	'type':		 
505. 								return	'integer'		 
506. 						 
507. 				return	len(get_words(text,	lang))		 
508. 		 
509. def	get_feature_words_per_sentence(text,	

meta	=	False,	lang	=	'english'):		 
510. 				"""Returns	a	feature	with	number	of	

words	 
511. 				TODO:	This	has	to	be	more	elaborate	 
512. 				"""		 
513. 				if	meta	==	'title':		 
514. 								return	

'number_of_words_per_sentence'		 
515. 				if	meta	==	'type':		 
516. 								return	'real'		 
517. 						 
518. 				if	int(get_feature_length(text))	<=	0:		 
519. 								return	0		 
520. 						 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 50 - 

521. 				return	'%.3f'	%	
(float(get_feature_word_count(text))	/	
get_feature_number_of_sentences(text))		 

522. 		 
523. def	get_feature_text_shannon_entropy(text,	

meta	=	False,	lang	=	'english'):		 
524. 				"""Returns	bits	of	entropy	represented	

in	a	given	string,	per		 
525. 				

http://en.wikipedia.org/wiki/Entropy_(information_theo
ry)	 

526. 				"""		 
527. 				if	meta	==	'title':		 
528. 								return	'text_entropy'		 
529. 				if	meta	==	'type':		 
530. 								return	'real'		 
531. 						 
532. 				mmap	=	{}		 
533. 				for	c	in	text:		 
534. 								mmap[c]	=	mmap.get(c,	0)	+	1		 
535. 						 
536. 				text_len	=	get_feature_length(text)		 
537. 				result	=	0.0		 
538. 						 
539. 				for	c	in	mmap:		 
540. 								freq	=	mmap[c]	/	float(text_len)		 
541. 								result	-=	freq	*	(math.log(freq)	/	

math.log(2))		 
542. 						 
543. 				return	'%.3f'	%	result		 
544. 		 
545. def	get_feature_sentiment_score(text,	meta	

=	False,	lang	=	'english'):		 
546. 				"""Returns	sentiment	score,	works	based	

on	the	english	translation	 
547. 				"""		 
548. 				if	meta	==	'title':		 
549. 								return	'sentiment_score'		 
550. 				if	meta	==	'type':		 
551. 								return	'real'		 
552. 										 
553. 				v	=	0		 
554. 				for	w	in	text.split("	"):		 
555. 								w	=	

w.strip(",.!?)(#:;\"\'").lower()		 
556. 								if	w	in	sentiment:		 
557. 												v	=	v	+	sentiment[w][0]	-	

sentiment[w][1]		 
558. 				return	str(v)		 
559. 		 
560. def	get_feature_mispelling_score(text,	meta	

=	False,	lang	=	'english'):		 
561. 				"""Returns	mispelling	statistics	 
562. 				"""		 
563. 				if	meta	==	'title':		 
564. 								return	'mispelling_score'		 
565. 				if	meta	==	'type':		 

566. 								return	'real'		 
567. 										 
568. 				if	not	lang	in	langs_speller:		 
569. 								warnings.warn('Unknown	input	

language:	%s'	%	(from_lang))		 
570. 								return	''		 
571. 				slang	=	langs_speller[lang]		 
572. 						 
573. 				word_counting	=	0		 
574. 				misspelled_words	=	0						 
575. 						 
576. 				d	=	enchant.Dict(slang)		 
577. 				for	w	in	get_words(text,	lang):		 
578. 								word_counting	+=	1		 
579. 								if	not	d.check(w):		 
580. 												misspelled_words	+=	1		 
581. 		 
582. 				if	word_counting	<=	0:		 
583. 								return	'0.0'		 
584. 						 
585. 				return	'%.3f'	%	

(float(misspelled_words)	/	float(word_counting))		 
586. 		 
587. def	clean_greek_letters(text):		 
588. 				text	=	text.replace(u'Î‘',	u'Î±')		 
589. 				text	=	text.replace(u'Î’',	u'Î²')		 
590. 				text	=	text.replace(u'Î“',	u'Î³')		 
591. 				text	=	text.replace(u'Î”',	u'Î´')		 
592. 				text	=	text.replace(u'Î•',	u'Îµ')		 
593. 				text	=	text.replace(u'Î–',	u'Î¶')		 
594. 				text	=	text.replace(u'Î—',	u'Î·')		 
595. 				text	=	text.replace(u'Î˜',	u'Î¸')		 
596. 				text	=	text.replace(u'Î™',	u'Î¹')		 
597. 				text	=	text.replace(u'Îš',	u'Îº')		 
598. 				text	=	text.replace(u'Î›',	u'Î»')		 
599. 				text	=	text.replace(u'Îœ',	u'Î¼')		 
600. 				text	=	text.replace(u'Î�',	u'Î½')		 
601. 				text	=	text.replace(u'Îž',	u'Î¾')		 
602. 				text	=	text.replace(u'ÎŸ',	u'Î¿')		 
603. 				text	=	text.replace(u'Î	',	u'Ï€')		 
604. 				text	=	text.replace(u'Î¡',	u'Ï�')		 
605. 				text	=	text.replace(u'Î£',	u'Ïƒ')		 
606. 				text	=	text.replace(u'Ï‚',	u'Ïƒ')		 
607. 				text	=	text.replace(u'Î¤',	u'Ï„')		 
608. 				text	=	text.replace(u'Î¥',	u'Ï…')		 
609. 				text	=	text.replace(u'Î¦',	u'Ï†')		 
610. 				text	=	text.replace(u'Î§',	u'Ï‡')		 
611. 				text	=	text.replace(u'Î¨',	u'Ïˆ')		 
612. 				text	=	text.replace(u'Î©',	u'Ï‰')		 
613. 				text	=	text.replace(u'Î†',	u'Î±')		 
614. 				text	=	text.replace(u'Îˆ',	u'Îµ')		 
615. 				text	=	text.replace(u'Î‰',	u'Î·')		 
616. 				text	=	text.replace(u'ÎŠ',	u'Î¹')		 
617. 				text	=	text.replace(u'Îª',	u'Î¹')		 
618. 				text	=	text.replace(u'ÎŒ',	u'Î¿')		 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 51 - 

619. 				text	=	text.replace(u'ÎŽ',	u'Ï…')		 
620. 				text	=	text.replace(u'Î«',	u'Ï…')		 
621. 				text	=	text.replace(u'Î�',	u'Ï‰')		 
622. 		 
623. 				text	=	text.replace(u'Î¬',	u'Î±')		 
624. 				text	=	text.replace(u'Î-',	u'Îµ')		 
625. 				text	=	text.replace(u'Ï�',	u'Ï…')		 
626. 				text	=	text.replace(u'Î¯',	u'Î¹')		 
627. 				text	=	text.replace(u'ÏŒ',	u'Î¿')		 
628. 				text	=	text.replace(u'Î®',	u'Î·')		 
629. 				text	=	text.replace(u'ÏŽ',	u'Ï‰')		 
630. 				text	=	text.replace(u'ÏŠ',	u'Î¹')		 
631. 				text	=	text.replace(u'Ï‹',	u'Ï…')		 
632. 				text	=	text.replace(u'Î�',	u'Î¹')		 
633. 				text	=	text.replace(u'Î°',	u'Ï…')		 
634. 		 
635. 				text	=	text	+	u'	'		 
636. 				#	text	=	text.replace(u'Î½	',	u'	')	#	

p.x.	to	"ÎµÎ½Î¿Ï�Î¹Î±Î½"	ginetai	"ÎµÎ½Î¿Ï�Î¹Î±"		 
637. 				text	=	text.replace(u'Ïƒ	',	u'Ï‚	')	#			 
638. 				text	=	text.strip()		 
639. 						 
640. 				return	text		 
641. 		 
642. def	clean_french_letters(text):		 
643. 				"""Currently	not	implemented"""		 
644. 				return	text						 
645. 		 
646. 		 
647. def	upper(text):		 
648. 				"""Capitilizes	text"""		 
649. 				text	=	text.replace(u'Î±',	u'Î‘')		 
650. 				text	=	text.replace(u'Î²',	u'Î’')		 
651. 				text	=	text.replace(u'Î³',	u'Î“')		 
652. 				text	=	text.replace(u'Î´',	u'Î”')		 
653. 				text	=	text.replace(u'Îµ',	u'Î•')		 
654. 				text	=	text.replace(u'Î¶',	u'Î–')		 
655. 				text	=	text.replace(u'Î·',	u'Î—')		 
656. 				text	=	text.replace(u'Î¸',	u'Î˜')		 
657. 				text	=	text.replace(u'Î¹',	u'Î™')		 
658. 				text	=	text.replace(u'Îº',	u'Îš')		 
659. 				text	=	text.replace(u'Î»',	u'Î›')		 
660. 				text	=	text.replace(u'Î¼',	u'Îœ')		 
661. 				text	=	text.replace(u'Î½',	u'Î�')		 
662. 				text	=	text.replace(u'Î¾',	u'Îž')		 
663. 				text	=	text.replace(u'Î¿',	u'ÎŸ')		 
664. 				text	=	text.replace(u'Ï€',	u'Î	')		 
665. 				text	=	text.replace(u'Ï�',	u'Î¡')		 
666. 				text	=	text.replace(u'Ïƒ',	u'Î£')		 
667. 				text	=	text.replace(u'Ï‚',	u'Î£')		 
668. 				text	=	text.replace(u'Ï„',	u'Î¤')		 
669. 				text	=	text.replace(u'Ï…',	u'Î¥')		 
670. 				text	=	text.replace(u'Ï†',	u'Î¦')		 
671. 				text	=	text.replace(u'Ï‡',	u'Î§')		 
672. 				text	=	text.replace(u'Ïˆ',	u'Î¨')		 

673. 				text	=	text.replace(u'Ï‰',	u'Î©')		 
674. 						 
675. 				return	text		 
676. 		 
677. def	get_pos_info(text,	debug	=	'',	

pos_directory	=	'/media/xaris/Data/PhD/POS/bin'):		 
678. 				"""Tries	to	execute	POS	tagger,	and	

retrieves	the	results	 
679. 				from	the	exported	file"""		 
680. 						 
681. 				if	not	text	or	text	==	'':		 
682. 								return	''		 
683. 										 
684. 				#	Till	a	better	solution		 
685. 				#	..	everything	has	to	be	done	where	

the	java	files	are		 
686. 				#	..	so	we	hardcode	pos_directory		 
687. 				#	..	but	keep	it	as	a	parameter		 
688. 		 
689. 				current_directory	=	os.getcwd()		 
690. 				os.chdir(pos_directory)		 
691. 		 
692. 				#	this	is	the	file	where	data	will	be	

stored		 
693. 				in_file	=	pos_directory	+	'/in.txt'		 
694. 						 
695. 				f	=	open(in_file,	'w')		 
696. 				f.write(text)		 
697. 				f.close()		 
698. 						 
699. 				#	output	file	is	hardcoded	according	to	

maintainer		 
700. 				out_file	=	pos_directory	+	

'/result.txt'		 
701. 						 
702. 				#	Keep	everything	clean		 
703. 				f	=	open(out_file,	'w')		 
704. 				f.write('')		 
705. 				f.close()		 
706. 						 
707. 				res	=	subprocess.call(['java',	'-jar',	

'POStagger.jar',	'1',	in_file])		 
708. 				if	res	!=	0:		 
709. 								#	This	means	that	program	

terminated	with	error		 
710. 								return	''		 
711. 						 
712. 				if	not	os.path.exists(out_file):		 
713. 								#	I	don't	why	this	can	happen		 
714. 								warnings.warn('Output	file	from	POS	

method	was	empty,	debug	data:	%s'	%	(str(debug)))		 
715. 								return	''		 
716. 										 
717. 				f	=	open(out_file,	'r')		 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 52 - 

718. 				ret	=	f.readlines()		 
719. 				f.close()		 
720. 						 
721. 				#	And	resoter	current	working	directory		 
722. 				os.chdir(current_directory)		 
723. 						 
724. 				return	"".join(ret)		 
725. 		 
726. def	get_translated_data(data,	from_lang,	

to_lang	=	'en',	debug	=	''):		 
727. 				"""Tries	to	translate	the	text	to	

english	 
728. 								using	Google	Translate	API	 
729. 				"""		 
730. 				if	not	from_lang	in	langs:		 
731. 								warnings.warn('Unknown	input	

language:	%s'	%	(from_lang))		 
732. 								return	''		 
733. 				from_lang	=	langs[from_lang]		 
734. 						 
735. 				if	from_lang	==	to_lang:		 
736. 								#	Apparently	there	is	no	need	to	

call	the	API		 
737. 								return	data		 
738. 		 
739. 				#	The	following	is	based	on	py-

translate		 
740. 				#	and	is	blocked	for	overuse		 
741. 				#	-------------------------------------

-------------------		 
742. 				#	return	

translate.translator(from_lang,	to_lang,	data)		 
743. 				#	-------------------------------------

-------------------		 
744. 		 
745. 				#	The	following	is	based	on	Google	API		 
746. 				#	and	is	only	on	paid	services		 
747. 				#	-------------------------------------

-------------------		 
748. 				#	translate_client	=	

translate.Client(frailsafe_google_api_key)		 
749. 				#	translation	=	

translate_client.translate(data,	source_language	=	
from_lang,	target_language	=	to_lang)		 

750. 				#	print('Text:	{}'.format(text))		 
751. 				#	print('Translation:	

{}'.format(translation['translatedText'].encode('utf-
8')))		 

752. 				#	-------------------------------------
-------------------		 

753. 		 
754. 				#	The	following	is	based	at	MyMemory	

service		 
755. 				#	-------------------------------------

-------------------		 
756. 				lines	=	data.split("\n")		 
757. 				trans_result	=	''		 
758. 				for	line	in	lines:		 

759. 								line	=	line.strip()		 
760. 								if	line	==	'':		 
761. 												continue		 
762. 														 
763. 								f	=	{}		 
764. 								f['q']	=	line		 
765. 								f['langpair']	=	'%s|%s'	%	

(from_lang,	to_lang)		 
766. 								f['of']	=	'json'		 
767. 								f['de']	=	mymemory_account_email		 
768. 						 
769. 								resp,	json_content	=	

httplib2.Http().request("%s?%s"	%	(mymemory_base_url,	
urllib.urlencode(f)))		 

770. 								result	=	json.loads(json_content)		 
771. 						 
772. 								if	result['responseStatus']	!=	200:		 
773. 												print	"Error	from	mymory,	

aborting..	Debug:	%s"	%	debug		 
774. 												return	''		 
775. 										 
776. 								trans_result	+=	

result['responseData']['translatedText']	+	"\n"		 
777. 				#	-------------------------------------

-------------------		 
778. 		 
779. 				return	trans_result		 
780. 		 
781. def	

update_corpus_with_translations(force_rebuild	=	
False):		 

782. 				"""Get	all	text	data	from	all	patients	 
783. 							and	updates	the	corpus	with	missing	

translations	 
784. 							In	order	to	avoid	overuse	of	the	

third-part	service,	 
785. 							we	save	locally	the	translation	for	

future	use.	 
786. 								 
787. 							The	force_rebuild	parameter,	will	

force	to	update	all	translations	 
788. 				"""		 
789. 				pids	=	fetch_patient_ids()		 
790. 		 
791. 				for	cpid	in	pids:		 
792. 								cpdata	=	fetch_patient_data(cpid)		 
793. 								updated	=	False		 
794. 								for	mt	in	multi_line_tags:		 
795. 												d	=	cpdata.get(mt,	'')														 
796. 												#	Adeio	keimeno														 
797. 												if	d	==	''	and	not	

force_rebuild:		 
798. 																continue		 
799. 														 
800. 												#	Exw	idi	ipologisei	POS	data														 
801. 												if	cpdata.get(mt	+	'_ENG',	'')	

!=	''	and	not	force_rebuild:		 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 53 - 

802. 																continue		 
803. 														 
804. 												#	Den	to	exoume,	as	to	paroume		 
805. 												ret	=	get_translated_data(d,	

cpdata['-language'],	debug	=	cpid)		 
806. 												if	ret	==	''	and	not	

force_rebuild:		 
807. 																continue		 
808. 														 
809. 												updated	=	True		 
810. 												cpdata[mt	+	'_ENG']	=	ret		 
811. 										 
812. 								#	Something	changed,	time	to	store	

it		 
813. 								if	updated:		 
814. 												print	'Updating	patient	%s'	%	

cpid,		 
815. 												save_patient_data(cpid,	cpdata)		 
816. 												print	'..Done'		 
817. 		 
818. def	get_sentiment_analysis_greek(data,	lang	

=	'greek'):		 
819. 				"""The	following	idea	was	based	on	a	

locally	saved,	sentiment	analysis	file	 
820. 								..	but	due	to	poor	results,	this	

idea	got	rejected	 
821. 								..	and	we	shifted	to	the	sentiment	

analysis	of	the	english	translation	 
822. 				"""		 
823. 				#	Load	all	data	from	sentiment	corpus		 
824. 				f	=	open('%s-sentiment-

lexicon/%s_sentiment_lexicon.tsv'	%	(lang,	lang),	'r')		 
825. 				lines	=	f.readlines()		 
826. 				f.close()		 
827. 						 
828. 				titles	=	lines[0].lower().split('\t')		 
829. 				del	lines[0]		 
830. 		 
831. 				sentiment_words	=	{}						 
832. 				for	line	in	lines:		 
833. 								parts	=	line.split('\t')		 
834. 										 
835. 								parts[0].rtim('-Î·	-Î¿')		 
836. 								term	=	stemming.stem(parts[0])		 
837. 										 
838. 								sentiment_words[	term	]	=	{}		 
839. 								for	p	in	range(len(parts)):		 
840. 												sentiment_words[	term	][	

titles[p]	]	=	parts[p]		 
841. 						 
842. 				for	k	in	sentiment_words.keys():		 
843. 								print	k,		 
844. 				print		 
845. 						 
846. 				data_clean	=	clean_up_text(data,	lang)		 

847. 				result	=	{}		 
848. 				result['anger']	=	0		 
849. 				result['disgust']	=	0		 
850. 				result['fear']	=	0		 
851. 				result['happiness']	=	0		 
852. 				result['sadness']	=	0		 
853. 				result['surprise']	=	0		 
854. 						 
855. 				words_identified	=	0		 
856. 						 
857. 				for	word	in	data_clean.split('	'):		 
858. 								if	not	word	in	sentiment_words:		 
859. 												continue		 
860. 		 
861. 								words_identified	+=	1		 
862. 								for	r	in	result:		 
863. 												for	k	in	sentiment_words[word]:		 
864. 																if	not	k.startswith(r)	or	

sentiment_words[word][k]	==	'N/A':		 
865. 																				continue		 
866. 																		 
867. 																result[r]	+=	

sentiment_words[word][k]		 
868. 		 
869. 				if	(words_identified	>	0):		 
870. 								for	r	in	result:		 
871. 												result[r]	=	float(result[r])	/	

float(words_identified)		 
872. 						 
873. 				return	result		 
874. 		 
875. def	

update_pos_info_everywhere(force_rebuild	=	False):		 
876. 				"""Get	all	text	data	from	all	patients	 
877. 							and	updates	the	corpus	with	Part-Of-

Speech	information	 
878. 								 
879. 							All	results	are	saved	within	the	

database	 
880. 				"""		 
881. 				pids	=	fetch_patient_ids()		 
882. 		 
883. 				for	cpid	in	pids:		 
884. 								cpdata	=	fetch_patient_data(cpid)		 
885. 								updated	=	False		 
886. 								for	mt	in	multi_line_tags:		 
887. 												d	=	cpdata.get(mt,	'')														 
888. 												#	Text	is	empty		 
889. 												if	d	==	''	and	not	

force_rebuild:		 
890. 																continue		 
891. 														 
892. 												#	I	already	have	this	POS	data		 
893. 												if	cpdata.get(mt	+	'_POS',	'')	

!=	''	and	not	force_rebuild:		 



FRAILSAFE – H2020-PHC–690140 D4.10 

- 54 - 

894. 																continue		 
895. 														 
896. 												#	POS	data	is	missing,	let's	

calculate	it		 
897. 												ret	=	get_pos_info(d)		 
898. 												if	ret	==	''	and	not	

force_rebuild:		 
899. 																continue		 
900. 														 
901. 												updated	=	True		 
902. 												cpdata[mt	+	'_POS']	=	ret		 
903. 										 
904. 								#	Something	changed,	time	to	store	

it		 
905. 								if	updated:		 
906. 												print	'Updating	patient	%s'	%	

cpid,		 
907. 												save_patient_data(cpid,	cpdata)		 
908. 												print	'..Done'		 
909. 		 
910. def	pos_explode_data(data):		 
911. 				"""Explodes	all	POS	data	from	a	string	 
912. 							..	as	given	by	the	POS	tagger	 
913. 							..	and	returns	a	more	programmaing-

friendly	object.	 
914. 								 
915. 							In	case	POS	tagger	changes,	this	

function	must	re-implemented	 
916. 				"""		 
917. 				result	=	[]		 
918. 				lines	=	data.split("\n")		 
919. 				for	l	in	lines:		 
920. 								if	l.strip()	==	''	or	l.find('	')	<	

0:		 
921. 												continue		 
922. 										 
923. 								word,	tags	=	l.split('	')		 
924. 								ps	=	tags.split('/')		 
925. 								result.append((word,	ps))		 
926. 						 
927. 				return	result		 
928. 		 
929. def	print_all_possible_pos_tags():		 

930. 				"""Prints	all	POS	data	within	our	
corpus	 

931. 				for	statistical	reasons"""		 
932. 				pids	=	fetch_patient_ids()		 
933. 		 
934. 				per_place	=	{}		 
935. 				for	cpid	in	pids:		 
936. 								cpdata	=	fetch_patient_data(cpid)		 
937. 								for	mt	in	multi_line_tags_POS:		 
938. 												d	=	cpdata.get(mt,	'')														 
939. 												#	Adeio	keimeno														 
940. 												if	d	==	'':		 
941. 																continue		 
942. 		 
943. 												pos_data	=	pos_explode_data(d)		 
944. 												for	word,	ps	in	pos_data:		 
945. 																for	pos	in	range(len(ps)):		 
946. 																				info	=	ps[pos]		 
947. 																				if	not	pos	in	

per_place:		 
948. 																								per_place[pos]	=	{}		 
949. 																						 
950. 																				per_place[pos][	info	]	

=	per_place[pos].get(info,	0)	+	1		 
951. 		 
952. 				i	=	0		 
953. 				while	i	in	per_place:		 
954. 								print	'Position	%d'	%	i		 
955. 								keys	=	per_place[i].keys()		 
956. 								keys.sort()		 
957. 								for	k	in	keys:		 
958. 												print	'	'	*	3	+	'%s:	%d'	%	(k,	

per_place[i][k])		 
959. 										 
960. 								i	+=	1		 
961. 		 
962. def	install_spell_greek_checker_files():		 
963. 				"""This	must	be	run	a	root	 
964. 				"""		 
965. 				#	Linux		 
966. 				#	sudo	apt-get	install	myspell-gr-el		 
967. 				pass		

 
 
  



FRAILSAFE – H2020-PHC–690140 D4.10 

- 55 - 

 

13.2 Prediction tool 
 

1. package	predictor;		 
2. 		 
3. import	weka.classifiers.Classifier;		 
4. import	weka.core.Instances;		 
5. import	weka.core.converters.ConverterUtils.DataSource;		 
6. 		 
7. public	class	PredictorCLI	{		 
8. 		 
9. 				public	static	void	main(String[]	args)	{		 
10. 																			 
11. 								Classifier	cls;		 
12. 								try	{		 
13. 												//load	model		 
14. 												cls	=	(Classifier)	weka.core.SerializationHelper.read("frailsafe.model");		 
15. 														 
16. 														 
17. 												DataSource	source;		 
18. 												try	{		 
19. 																//load	test	data		 
20. 																source	=	new	DataSource("in.arff");		 
21. 																Instances	data	=	source.getDataSet();		 
22. 																if	(data.classIndex()	==	-1)		 
23. 																			data.setClassIndex(1);	//class	attribute	is	the	second	attribute		 
24. 														 
25. 																//predict	&	print		 
26. 																for(int	i=0;	i<data.numInstances();i++){		 
27. 																				double	value=cls.classifyInstance(data.instance(i));		 
28. 																				String	prediction=data.classAttribute().value((int)value);		 
29. 																				System.out.println("Prediction	for	instance:	"+i+"	is:	"+prediction);		 
30. 																}		 
31. 																		 
32. 												}	catch	(Exception	e)	{		 
33. 																//	TODO	Auto-generated	catch	block		 
34. 																e.printStackTrace();		 
35. 												}		 
36. 								}	catch	(Exception	e)	{		 
37. 												//	TODO	Auto-generated	catch	block		 
38. 												e.printStackTrace();		 
39. 								}		 
40. 				}		 
41. 						 
42. }		 

 


