
Project Title: Sensing and predictive treatment of frailty and associated
co-morbidities using advanced personalized models and
advanced interventions

Contract No: 690140
Instrument: Collaborative Project
Call identifier: H2020-PHC-2014-2015

Topic: PHC-21-2015: Advancing active and healthy ageing with ICT:
Early risk detection and intervention

Start of project: 1 January 2016
Duration: 36 months

Deliverable No: D4.11
LingTester (Prototype) (vers b)

Due date of deliverable: M24 (31th December 2017)
Actual submission date: 31st December 2017
Version: 1.6
Date: 31st December 2017

Lead Author: Sgarbas Kyriakos (UoP)
Lead partners: UoP

1

Ref. Ares(2017)6389636 - 31/12/2017

FRAILSAFE – H2020-PHC–690140 D4.11

CHANGE HISTORY

Ver
. Date Status Author (Beneficiary) Description

1.0 15/11/2016 Draft N. Fazakis,
C. Tsimpouris,
K. Sgarbas (UoP)

First Draft (vers a)

1.1 22/11/2016 Draft N. Fazakis,
C. Tsimpouris

Update of introduction, list of tables,
minor text corrections,
addition of references (vers a)

1.2 21/12/2016 Final N. Fazakis,
C. Tsimpouris,
K. Sgarbas (UoP)

Final version (vers a)

1.3 3/8/2017 Draft C. Tsimpouris Updates on data and images (vers b)
1.4 4/10/2017 Draft N. Fazakis Chapter 7 updates (vers b)
1.5 14/12/2017 Draft N. Fazakis,

C. Tsimpouris
Update of introduction, list of tables,
minor text corrections,
addition of references (vers b)

1.6 20/12/2017 Final N. Fazakis,
C. Tsimpouris,
K. Sgarbas (UoP)

Final version (vers b)

- 2 -

FRAILSAFE – H2020-PHC–690140 D4.11

EXECUTIVE SUMMARY

LingTester is the FrailSafe language analysis tool that aims to process the user’s typed text and
detect abnormal behaviour. At this point, the development of the prototype has been completed,
and the prototype is able to perform classification according to levels of frailty. The present
deliverable describes the development of the prototype, the algorithms used, the training
process and some preliminary test results.

This deliverable is part of WP4. The main objective of this Work Package is to handle the
collection, management and analysis of frailty older people data streamed through their social,
behavioural, cognitive and physical activities. Both offline and online methods will be developed.
Moreover, the above methods will be applied in order to manage and analyze new data and
also generate the FrailSafe patient models.

LingTester will be able to detect signs of mental frailty and personality trait shifts by linguistic
processing of a person’s written (typed) messages. The linguistic analysis is performed in
several layers (ranging from word spelling to Part of Speech -POS- analysis) utilizing the state
of the art models in order to determine the mental states of the patients the input texts exhibit.
The linguistic corpus obtained from D4.7 is used both for the initial training and the final passive
mode (off-line) testing of the prototype.

Along with the results of the patient data analysis, two aiding software programs are delivered in
order for the FrailSafe user to manage the patient database and use prediction model to obtain
predictions for specific potential patients.

- 3 -

FRAILSAFE – H2020-PHC–690140 D4.11

DOCUMENT INFORMATION

Contract Number: H2020-PHC–690140 Acronym: FRAILSAFE

Full title Sensing and predictive treatment of frailty and associated co-morbidities
using advanced personalized models and advanced interventions

Project URL http://frailsafe-project.eu/

EU Project officer Mr. Ramón Sanmartín Sola

Deliverable number: 4.11 Title: LingTester (Prototype) (vers b)

Work package number: 4 Title: Data management and Analysis

Date of delivery Contractual 31/12/2017 (M24) Actual 31/12/2017

Status Draft □ Final ⌧

Nature Report ⌧ Demonstrator □ Other □

Dissemination
Level

Public ◻ Consortium ⌧

Abstract

(for dissemination)

This is a confidential report that summarizes the progress of the
construction of LingTester offline prototype. The architecture of the system
is described in detail, and what steps were needed to evaluate its output.
Also, the structure of the internal offline database is described and how it
is managed.

Keywords offline data management, frailty prediction, classification

Contributing
authors

(beneficiaries)

Fazakis Nikos (UoP)

Tsimpouris Charalampos(UoP)

Sgarbas Kyriakos (UoP)

Megalooikonomou Vasileios (UoP)

Responsible
author(s)

Sgarbas Kyriakos Email sgarbas@upatras.gr

Beneficiary UoP Phone +30 2610 996 470

- 4 -

http://frailsafe-project.eu/
http://frailsafe-project.eu/

FRAILSAFE – H2020-PHC–690140 D4.11

Table of contents

CHANGE HISTORY 2

EXECUTIVE SUMMARY 3

DOCUMENT INFORMATION 4

Table of contents 5

List of Figures and Images 7

List of Tables 7

1. Introduction 8

2. LingTester architecture 9
2.1 Initial architecture 9
2.2 Current architecture 10

3. Data collection 12
3.1 Data analysis 12
3.2 Data verification 12

4. Local database 13
4.1 Introduction 13
4.2 Database description 13
4.3 Part-Of-Speech extraction 16
4.4 English translation for sentiment analysis 17
4.5 Database self-validation 18
4.6 Database auto-update 18

5. Experiments and results 18
5.1 Preproccessing 18
5.2 Precision & Recall 22
5.3 Semi-supervised learning 28
5.4 Conclusions 31

7. System development 32
7.1 Software used for training and prediction 32
7.2 Installation notes for training and prediction 32

7.2.1 Python core and Python modules 33
7.2.2 Java Virtual Machine (JVM) 33
7.2.3 POS Tagger 33
7.2.4 OpenOffice dictionaries 33

- 5 -

FRAILSAFE – H2020-PHC–690140 D4.11

7.2.5 Weka 34

8. Frailsafe user software 34
8.1 Steps to import new data 34
8.2 Steps to export results 35

9. Ethics and Safety 38

10. References 39

11. Source files 41

12. Annexes 42
12.1 Database management & feature extraction 42
12.2 Prediction tool 63

- 6 -

FRAILSAFE – H2020-PHC–690140 D4.11

List of Figures and Images
Figure 1. Initial architecture for LingTester 9
Figure 2. Current architecture for offline LingTester 11
Figure 3. Training and prediction process 19
Figure 4. Selected features 24
Figure 5. Model statistics 27
Image 1. KEEL Scenario 30
Image 2. Execution of the scenario through RunKeeL 31
Image 3. Screenshot of real time operation 35
Image 4. Input file structure 36
Image 5. Screenshot of prediction programme while executing 37

List of Tables
Table 1. POS tagger example 17
Table 2. Analysis of all extracted features 22
Table 3. Summary of classification algorithms 25
Table 4. Parameterization of the Decision Tree model 27

List of annexes
Annex 1 Database management & feature extraction 43
Annex 2 Prediction model, source code 64

List of abbreviations and acronyms
API Application Programming Interface

ARFF Attribute-Relation File Format
JVM Java Virtual Machine
KNN K-Nearest Neighbor
NLP Natural Language Programming

LOOCV Leave-one-out cross-validation
PoS Part Of Speech
SVM Support Vector Machine
UoP University of Patras

Weka Waikato Environment for Knowledge Analysis

- 7 -

FRAILSAFE – H2020-PHC–690140 D4.11

1. Introduction

A proper evaluation of the nature of a patient’s language impairment requires consideration of
patterns of breakdown in the context of an account of language comprehension which specifies
the various processes and representations involved: the representation of linguistic knowledge,
it's automatic and controlled access, and the mental processes which combine different types of
linguistic knowledge. When we understand a written sentence, we automatically access the
meanings of individual words together with their syntactic specifications and combine them on
the basis of this lexically specified information. There are various types of text analysis
processes; some are syntactic, such as the integration of a definite article with the following
noun or adjective to form a noun phrase, and the integration of a verb and its argument into a
verb phrase. Others are morphological, such as the combination of stems and affixes to form
morphologically complex words, and yet others involve combinatorial processes which modify
the meanings of words when they are integrated with other words. For example, an aspect of
the meaning of grass is that it is green; but in the phrase dry grass, its meaning changes slightly
to highlight a different aspect of grass— its brownness.

In order to implement the first version of LingTester an architectural analysis was prepared. The
current architecture of LingTester led the need to categorize the research in four main areas.

The first area of research relates to the analysis and the issues of the collected subjects’ data.
The key aspects and features of the dataset were investigated and solutions were given to the
unexpected arosen problems. The structural organization of the local database and the
development of the processes for the management of the local database was another area of
research. A simple but very informative and mobile structure for offline data storage along with
its necessary manipulation methods was designed and implemented. In the area of the highly
critical classification task, the domains of feature extraction, feature selection text classification
and model optimization were deeply studied and exhaustively experimented in order to obtain
the first acceptable prediction results. The implementation of the aiding software for the
FrailSafe user was another key area of research, with the deployment of technologies like
Python and Java a cross-platform approach was achieved and the first semi-integrated user
software package has been developed successfully.

Following the analysis of the basic areas of research this deliverable includes, chapters relating
with the System Development subjects of the software used and the installation notes, the basic
usage instructions of the FrailSafe software package and finally the future work that seems
promising and is already being planned, for the completeness of the document.

- 8 -

FRAILSAFE – H2020-PHC–690140 D4.11

2. LingTester architecture

2.1 Initial architecture

The initial design of the Natural Language Analysis component (a.k.a. LingTester), is
shown in the following diagram:

Figure 1. Initial architecture for LingTester

LingTester was initially designed to include four computational linguistic modules: a Word
Speller, a Morphological Processor, a Syntactic Parser, and a Semantic Processor. A Language
Model would be able to feed them with linguistic information. The Language Model would be
composed by a Formal Component representing the lexicon, grammar and syntactic rules of the
language, and a Statistical Component containing results of word and bigram frequencies. The
whole structure was meant to be modular (in order to facilitate its use in several languages - two
in the project) and would be developed over a blackboard scheme representation model that
would be able to collect the output of each component and enable them to interact with each
other, when necessary. The system was based on the main assumption that all texts would be
written by the patients themselves and the classification module would provide rule-based
results.

Thus, after a stage of adaptation/training/fine-tuning, LingTester was expected to detect frailty
symptoms related to the use of language, and derive the patient's condition, according to the
following table:

- 9 -

FRAILSAFE – H2020-PHC–690140 D4.11

STAGE CONDITION SYMPTOMS (Indicative)

1 Normal -

2 Cognitive Decline Misspellings, character transpositions/ eliminations.

3 Cognitive
Impairment

Misuse of functional words, morphological errors.

4 Dementia Serious syntactic and semantic errors.

It should be stressed once more that the aforementioned design presupposes that the users will
be able to type their own text messages, since key features like spelling, morphology and
punctuation carry a significant portion of the information we expected to use in order to detect
possible discrepancies in written text.

With this in mind, we have included some questions in the questionnaires (detailed in
deliverable D2.1 Clinical Study Methodology) that serve the purpose of producing data for the
LingTester (for training and test). However, during the process of questionnaire collection we
realized that very few subjects were able to type. The vast majority were not, and they dictated
their answers to the person responsible for carrying out the interview who then typed the
answers as best as they could.

This changed the initial architecture significantly. We had to use methods of mental frailty
detection that would be robust under interpretation via a third person. Specifically, it became
evident to treat the process of text writing as a Hidden-Markov Process, where the person's
mental state evolves over time, but we do not have direct data on this evolution, but only indirect
evidence (the written text) that can reveal the (hidden) mental state. For this reason, statistical
and information-based text analysis methods were prefered instead of the rule-based of the
initial design. This was already documented in D2.1. The new (current) architecture is described
next.

2.2 Current architecture
After thorough study of current practices and development, we re-evaluated the initial
architecture according to the following figure. The structure has been kept mostly intact,
however with some specific changes. Firstly, the syntactic parser has been replaced by a Part
Of Speech tagger (see section 4.3 for more details), as the later can produce more accurate
results for the Greek language. Furthermore, semantic processing module was replaced by a
sentiment analysis module to try and provide a sentiment analysis of the patient through written
text. Written texts are translated to English one, and then we can export polarity features to the
classification process. This decision was based at the fact, that there is no state of the art
available tools for sentiment analysis for this language. It has been shown that working with

- 10 -

FRAILSAFE – H2020-PHC–690140 D4.11

standard technology and existing sentiment analysis approaches is a viable approach to
sentiment analysis within a multilingual framework (Denecke, 2008).

As shown in the following figure (Figure 2), written text is submitted to LingTester tool through a
predetermined process and is stored within a secure database for further analysis. In order to
create the training model, all patient rows are fetched from the offline database and features are
extracted for the next step. Each feature utilises different resources and is based on different
third-party or not tools. These tools are described thoroughly in section 4. This step is followed
by the training module which extracts a model in a binary format for testing and evaluation. This
methodology has been repeated multiple times so as to maximise accuracy while also
optimising all parameters of the system. The final model is packaged in a way to be more
programmer-friendly (see section 8 for more details).

Figure 2. Current architecture for offline LingTester

Finally, it should be stressed that system should provide patient's condition in the following
clusters: non-frail, pre-frail, frail.

- 11 -

FRAILSAFE – H2020-PHC–690140 D4.11

3. Data collection
Although data collection at first might not seem related to the development of the prototype, it
actually plays a very significant role. Even inspection of the data collected can indicate which
analysis tools and methods are applicable to the task. We have already stated that the nature of
the collected data forced us to reconsider the aforementioned initial design. Moreover, in the
current architecture text data are needed to train and test several components of LingTester.

3.1 Data analysis
The current deliverable uses data collected until 31/10/2017 (Μ22). Until then we had available
the following patient data:

● Data from 128 participants, UoP, Greece
● Data from 87 participants, MATERIA, Cyprus
● Data from 94 participants, MATERIA, Cyprus

The following patient data per recruitment centre are expected, according to the following
timeline as set in detail at D2.1 Clinical study methodology:

● 80 patients from Start-up Group A,
● 20 patients from main Group B,
● 25 following afterwards will belong to the Evaluation Group C and
● the last 25 to the Control Group (D), totalling 150 patients.

The total data volume from all recruitment centers will include 450 patients, with multiple
submissions during the duration of the project, per patient. More details about the participant’s
data can be found in deliverable D4.13.

3.2 Data verification
During data collection, some discrepancies were noted concerning the slightly different patient
numbering among different research groups. In the local database we took measures to verify
the correct index for each patient since no version control was used during the collection of
each dataset.

- 12 -

FRAILSAFE – H2020-PHC–690140 D4.11

4. Local database

4.1 Introduction
An offline database has been created based on initial raw data, as given by the partners. While
we are still under heavy development till we finalise the selection of features, we had to keep an
easy-to-use, cross-platform or operating system, and loose structure database. This
aforementioned decision provided numerous advantages, as discussed below:

● Each patient data is saved within a single text file, with UTF8 encoding, based on the
underlying file structure system, whatever this is (NTFS/Fat32 for Windows, Ext4 for
Linux, etc). This also helps to avoid any database management tools like ODBC drivers
and so forth.

● File naming is based on patient id. So, it is really easy to retrieve data for a single patient
and edit the file whenever necessary through user’s favourite editor

● All tags (attributes) per patient are dash prefixed, so we can add or remove attributes
however it suits best

● Data is retrieved and saved through generic Python functions, as described in the
following section. Also, due to the use of the filesystem, we can also construct different
or new methodology in a different programming language without potential connection
problems with a database system.

● Create backups of all data, using a compressed data type, like zip
● Can support versioning. Using any known version control system such as GIT, we are

able to keep track of the database changes at all times looking backwards

On the downside, this database structure does not provide any security firewall by itself.
Security is based on the access provided by the file system, and for this reason all files are
stored locally.

While it can be argued if this this structure can sustain a production-ready solution with
thousands of rows, we keep in mind at all times. Upon methodology finalisation, database will
also get its final form and this will be discussed again in a later report.

4.2 Database description

The structure of the data within the database files is described below. An example of a patient's
data with id 1001 is the following:

-patient 1001
-tag prefrail

- 13 -

FRAILSAFE – H2020-PHC–690140 D4.11

-transcript no
-language greek
-sex female
- date ##/##/####

-desc_event
Υπάρχουν πολλά σημαντικά θετικά γεγονότα στη ζωή μου. Ένα από αυτά είναι η επιτυχία μου

στη Φιλοσοφική Σχολή του Πανεπιστημίου Αθηνών, καθώς την ίδια περίοδο, με παράλληλες

εξετάσεις και στη Νομική Αθηνών.
Πήρα μεγάλη χαρά γιατί ήταν καρπός πολύ εντατικής μελέτης- ένα ολόκληρο καλοκαίρι

μόνον- με δεκαεπτά ημέρες μόνον φροντιστήριο και επί πλέον είχα μεγάλη επιθυμία να

σπουδάσω, να μορφωθώ. Διάλεξα τη Φιλοσοφική και δεν έχω ούτε μια στιγμή μετανοιώσει…

-desc_event_ENG
There are many important positive events in my life. One of them is my success at the

Philosophical Faculty of the University of Athens, as the same period, with parallel

tests and Athens Law.
I took great pleasure because it was the result of very intensive meletis- an entire

summer monon- with seventeen days only tutorial and moreover I had a great desire to

study, get an education. I chose Philosophy and I have not a moment regret ...

-desc_event_POS
Υπάρχουν verb/--/active/plural/present
πολλά adjective/accusative/neuter/plural/--
σημαντικά adjective/accusative/neuter/plural/--
θετικά adjective/accusative/neuter/plural/--
.
.
.
έχω verb/--/active/singular/present
ούτε conjunction/--/--/--/--
μια numeral/--/--/--/--
στιγμή noun/accusative/feminine/singular/--
μετανοιώσει… noun/genitive/masculine/singular/--

-desc_image
Βρισκόμαστε μπροστά σε μια ‘’ σουρεαλιστική’’ εικόνα, σε μια σκηνή που διαδραματίζεται

σε μια κουζίνα. Μια ‘’καλή’’ νοικοκυρά ασχολείται με το πλύσιμο ή το σκούπισμα των

πιάτων ενω μπροστά της η λεκάνη του νεροχύτη πλυμμηρίζει και τα νερά χύνονται στο

πάτωμα. Θαυμάζει κανείς τη μακαριότητά της, την αταραξία της μπροστά στο φαινόμενο.
Άραγε τί την απασχολεί που δεν μπορεί να αντιληφθεί ότι τα παιδιά της, στον ίδιο χώρο,

πίσω από την πλάτη της…. ‘’ κλέβουν’’ το γλυκό από το επάνω ντουλάπι και το χειρότερο,

ο γιός της που έχει ανέβει πάνω σε ένα ψηλό σκαμπό κοντεύει να πέσει, καθώς αυτό γέρνει

στο πλάϊ ,έτοιμο να καταρρεύσει. Ω, τι κόσμος μαμά!!

-desc_image_ENG
We face a surreal picture, in a scene that takes place in a kitchen. A good housewife

engaged in washing or wiping the dishes while in front of the sink basin plymmirizei

and the water poured on the floor. One admires the blessedness, the equanimity of the

front of the phenomenon.
I wonder what the concern can not perceive that children of the same place, behind the

... back. Steal sweet from the upper cabinet and the worst, the son who has climbed on

a tall stool is about to fall, as it leans on the side, ready to collapse. Oh, mama

world !!

- 14 -

FRAILSAFE – H2020-PHC–690140 D4.11

-desc_image_POS
Βρισκόμαστε verb/--/active/plural/present
μπροστά adverb/--/--/--/--
σε preposition/--/--/--/--
μια numeral/--/--/--/--
.
.
.
τι pronoun/inflectionless/--/--/--
κόσμος noun/nominative/masculine/singular/--

-prev_text

-prev_text_ENG

-prev_text_POS

While, there is no styling within the plain text files, and newlines do not affect the parsing of the
file structure, from the above structure we can easily retrieve all available attributes (tags) as
they are all prefixed by a dash, which are:

● -patient: The patient ID. This attribute exists in all files. While the same number exists
also in the filename, we put it here for consistency reasons and backwards compatibility
for future updates.

● -transcript: This is identified by the following options (also described in detail in
section 3.1)

○ yes : Text was written by the doctor, while the patient was talking
○ no : Text was written in hand by the patient, and it was digitized through the

doctor
○ na : Not available, for instance for patients that refused to participate in this action

● -date: The date of the written text relates to
● -language: This is identified by the following options

○ greek : Text is in Greek
○ greek-polytonic : Text is in Greek Polytonic.
○ greek-cypriot : Text is in Greek cypriot.
○ french : Text is in French.

● -tag: This is identified by the following options
○ nonfrail : Patient is identified as non-frail
○ prefrail : Patient is identified as pre-frail
○ frail : Patient is identified as frail
○ na : Data is missing/not available

● -sex: This is identified by the following self-explanatory options
○ male

○ female

● -desc_event: Multiline text, the description of an event
● -desc_image: Multiline text, the description of an image

- 15 -

FRAILSAFE – H2020-PHC–690140 D4.11

● -prev_text: Multiline text, previous text of the same patient, which is not necessarily a
description of an event or an image. It can be of any context and is provided by the
subject, for instance an old email, to compare extracted features between different time
periods.

● -desc_event_POS, -desc_image_POS, -prev_text_POS: Part of speech
information for each multiline tag, as set before

● -desc_event_ENG, -desc_image_ENG, -prev_text_ENG: English translation,
based on -desc_event, -desc_image, -prev_text data.

4.3 Part-Of-Speech extraction
The Part of Speech tagger attempts to automatically determine the part of speech (e.g., noun,
adjective, verb, etc.) of each word occurrence in Greek texts. It can also tag each word
occurrence with additional information, such as the gender, number, and case of each noun, the
voice, tense, and number of each verb (Koleli, 2011). The current version of AUEB's Greek POS
tagger that was used is version 2 alpha and is released under the GNU General Public License.

The POS tagger can recognise the following classes of words, along with other useful
information per case:

1. adjective
2. adverb
3. article
4. conjunction
5. noun
6. numeral
7. other
8. particle
9. preposition
10. pronoun
11. punctuation
12. verb

Following is an example evaluating this POS tagger in action. The sentence “Υπάρχουν πολλά
σημαντικά θετικά γεγονότα στη ζωή μου.” (which translates to “There are many important
positive facts in my life.”) produces the following information.

Υπάρχουν
There are

verb -- active plural present

πολλά
many

adjective accusative neuter plural -

- 16 -

FRAILSAFE – H2020-PHC–690140 D4.11

σημαντικά
important

adjective accusative neuter plural -

θετικά
positive

adjective accusative neuter plural -

γεγονότα
facts

noun accusative neuter plural -

στη
in

article prepositional accusative feminine singular

ζωή
life

noun accusative feminine singular -

μου
my

noun genitive masculine singular -

. punctuation - - - -

Table 1. POS tagger example

In order to optimize the system, POS information is extracted once per case, and the database
is automatically updated for future use. See also section 4.6 for more details.

4.4 English translation for sentiment analysis
To achieve better results in sentiment analysis, a significant decision was made to avoid direct
sentiment analysis in Greek language or French one, but translate texts in English and then
evaluate the later one. This process, also helps make the system even more language
independent by utilising a unified translation system, and then shifting the sentiment analysis
problem to a different level.

However, in order for this methodology to work, a third party translation service had to be used.
After further investigation, we narrowed down to MyMemory service
(https://mymemory.translated.net/), a free to use service. This translation service, uses both
human and machine learning techniques for best results. MyMemory gives quick access to a
large number of translations originating from professional translators, LSPs, customers and
multilingual web content. It uses a powerful matching algorithm to provide the best translations
available for the source text. Last but not least, we should mention that MyMemory currently
contains professionally translated segments. System is constructed in a way to be modular in
mind, and this is also the case for the translation submodule. In case there is any
discontinuance of this service, we can easily switch to a different one, like the well known paid
Google Translation API service. However, MyMerory was used for its simple API, free of charge
pricing while providing translations of high quality results.

- 17 -

https://mymemory.translated.net/

FRAILSAFE – H2020-PHC–690140 D4.11

4.5 Database self-validation
As database management is one of the many steps to extract and create the frailty status
prediction model, we had to be sure that all data stored should fulfill all the requirements for the
next steps of analysis, which is data/text mining and will be performed by the free software
WEKA (Eibe, Mark, Ian 20016). Having said that, it was of paramount importance for the
created ARFF files (the WEKA-specific file format) to be always valid, avoid missing attributes or
identify typos. So, a function was created for this purpose that reads all patient data and tries to
identify discrepancies between saved data and expected classes. Finally, it also exports some
basic statistical information, as were explained in detail in section 3.1

4.6 Database auto-update
In order to have a valid state of the database at all times, a library has been constructed in a
way to always keep its internal structure useable and filled with all needed data. For this reason,
specific functions have been created to check and update all patient data according to user
standards. Function update_pos_info_everywhere() loads all patient data available from
the database, and updates any missing POS data for new or updated rows. Also, function
update_corpus_with_translations() , whenever called, will update the whole database
with any missing english translations. The function has been constructed in a way to respect
initial language as set in each patient data, which means that translation respects patient’s
language. For example Greek to English for Greek patients and French to English for patients
from France and so forth.

5. Experiments and results

5.1 Preproccessing
Feature extraction

The classification task of the mental state of a subject requires the deployment of machine
learning and pattern recognition techniques. The basic requirement for these techniques is the
processing of the organized patient data with feature extraction methods before the training and
prediction procedures as can be viewed in figure 3. Feature extraction starts from an initial set
of measured data and builds derived values (features) intended to be informative and
nonredundant, facilitating the subsequent learning and generalization steps, and in some cases
leading to better human interpretations. Feature extraction involves reducing the amount of

- 18 -

FRAILSAFE – H2020-PHC–690140 D4.11

resources required to describe a large set of data. When performing analysis of complex data
one of the major problems stems from the number of variables involved. Analysis with a large
number of variables generally requires a large amount of memory and computation power, also
it may cause a classification algorithm to overfit to training samples and generalize poorly to
new samples. Feature extraction is a general term for methods of constructing combinations of
the variables to get around these problems while still describing the data with sufficient
accuracy.

Figure 3. Training and prediction process

The implemented feature extraction algorithm for the LingTester uses several extraction
methods (see table 3). The first ones involve the standardization of the basic attributes of the
collected data. For the features transcript, language, class and sex, which as their name
suggests describe basic information from collected data, simple rules and correction algorithms
have been applied in order for the extracted data to be distinctly formalized.

Another categorization of feature extraction methods implemented uses statistical measures for
the written text of the subjects. Those measures include the text length, the number of
sentences, the number of words per sentence, the text entropy and various readability scores.

Proceeding to more NLP specific techniques the term frequency–inverse document frequency
(tf-idf) is used. Tf-idf is a numerical statistic that is intended to reflect how important a word is to
a document in a corpus. It is used as a weighting factor in text mining. The tf-idf value increases
proportionally to the number of times a word appears in the document, but is offset by the
frequency of the word in the corpus, which helps to adjust for the fact that some words appear
more frequently in general (Salton et al, 1983). To gain as much information as possible from
this methodology, we utilised tf-idf twice. The first time is based in stemmed words, in order to
avoid all suffixes. The second one, is based on POS data.This way, we could identify possible
unigrams, or bigrams that are more frequent than other (for instance verb+adjective).

- 19 -

FRAILSAFE – H2020-PHC–690140 D4.11

Written text can be broadly categorized into two types: facts and opinions. Opinions carry
people's sentiments, appraisals and feelings toward the world. The module(open source) that is
used for sentiment analysis (sentiment within pattern.en) bundles a lexicon of adjectives
(e.g., good, bad, amazing, irritating, ...) that occur frequently in product reviews, annotated with
scores for sentiment polarity (positive ↔ negative) and subjectivity (objective ↔ subjective).
Using the sentiment() function we gain polarity and subjectivity for the given sentence,
based on the adjectives it contains, where polarity is a value between -1.0 and +1.0 and
subjectivity between 0.0 and 1.0.

A last preprocess step was to try and identify misspellings. In order to base our work on open
source or community based tools, we used the python pyenchant library combined with the
OpenOffice speller dictionary. This speller, is widely used by thousands of users through
OpenOffice applications like OpenOffice Writer, for multiple operating systems like Linux or
Microsoft Windows and is easily accessible through a Python API. For our case, we extracted
the number of misspelling words against all words per case. The following table summarizes all
exported features.

Feature Names Type - Extraction Method

● transcript
○ yes
○ no

● language
○ greek
○ greek-cypriot
○ french

● class
○ nonfrail
○ prefrail
○ frail

● data
○ Date of the submission for the

transition study
● sex

○ male
○ female

● do_you_consider_yourself_a_familiar

_user_of_social_media
○ beginner
○ less-familiar
○ very-familiar

● family_status
○ married-or-in-a-relationship
○ single

Primitive
Rules & filters on eCRF API data

- 20 -

FRAILSAFE – H2020-PHC–690140 D4.11

○ divorced,
○ widow

● habitation_zone
○ urban
○ semi-urban
○ rural

● have_you_changed_your_security_se
ttings_in_social_media_in_order_to_p
rotect_your_personal_data

○ yes
○ no

● year_of_birth
● con_per_week connections per week
● twitter_follows number if people user is

following on Twitter
● twitter_followers number of followers on

Twitter
● fb_friends number of friends on FB

● text_length
● number_of_sentences
● number_of_words
● number_of_words_per_sentence
● text_entropy

Derived
Statistical Measures

● desc_image_ENG_sentiment
● desc_event_ENG_sentiment
● prev_text_ENG_sentiment

Derived
Sentiment Analysis

● desc_image_misspelled
● desc_event_misspelled
● prev_text_misspelled

Derived
Percent of misspelled words based on
known vocabulary

● tf-0
● tf-1
● ...

Derived
Term frequency – Inverse document
frequency, after feature selection based on
information gain

● flesch_reading_ease
● smog_index
● flesch_kincaid_grade
● coleman_liau_index
● automated_readability_index
● dale_chall_readability_score
● difficult_words
● linsear_write_formula
● gunning_fog

Derived
Readability score

Table 2. Analysis of all extracted features

- 21 -

FRAILSAFE – H2020-PHC–690140 D4.11

5.2 Precision & Recall

Feature selection

The next step before proceeding to classification task is the feature selection task. Feature
selection, also known as variable selection, attribute selection or variable subset selection, is
the process of selecting a subset of relevant features (variables, predictors) for use in model
construction. Feature selection techniques are used for three reasons:

● simplification of models to make them easier to interpret by researchers/users, (Gareth,
2013)

● shorter training times,
● enhanced generalization by reducing overfitting(formally, reduction of variance)

The central premise when using a feature selection technique is that the data contains many
features that are either redundant or irrelevant, and can thus be removed without incurring much
loss of information (Bermingham, 2015). Redundant or irrelevant features are two distinct
notions, since one relevant feature may be redundant in the presence of another relevant
feature with which it is strongly correlated.

A number of techniques have been proposed in the literature using algorithms and even
classifiers for automating the process of feature selection. The most common algorithms are the
exhaustive, best first (Pearl, 1984), simulated annealing (Khachaturyan, 1979) and the genetic
algorithm (Mitchell, 1996). In practice, the task of feature selection is a highly empirical process
where algorithms and human intelligence are combined in order to find the optimal subset of
features, thus constructing the final feature set that will be used in the classification task.

The first approach to feature selection, in the preliminary version of the report was the simple
deployment of a custom algorithm that was based on a Decision Tree classifier and its features’
information gain, as presented below.

 Feature Selection Algorithm

Input:
Load the complete set of features (C)

Count the number of all features (N)
Classify with C and store the accuracy (A)

- 22 -

FRAILSAFE – H2020-PHC–690140 D4.11

Initialize pointer as zero (P)
Loop for N

Remove C[P]
Classify with C (Ac)
If Ac < A

 Restore C[P]

Validate features by tree visualization

Output:
Subset of features (S)

In the final version of the LingTester prototype a much stronger approach was followed,
resulting in a series of multiple procedures like the ranking of features’ correlation with frailty
class, the deployment of a Logistic Model Tree to reduce the feature space and finally the
human expertise to optimize the extracted feature space, as stated in D4.13 in more detail. The
final selected features are the following.

- 23 -

FRAILSAFE – H2020-PHC–690140 D4.11

Figure 4. Selected features

Classification process

The automatic classification of documents into predefined categories is an important field of
active research, the documents can be classified by three classes of methods:

● Unsupervised (Duda, 2001) methods, where no human intervention is required for
labeling the collected data and the algorithms deployed are responsible for grouping the
data to distinct categories.

● Supervised methods, usually the human expertise is used for labeling each individual
instance of the dataset.

- 24 -

FRAILSAFE – H2020-PHC–690140 D4.11

● Semi supervised methods, in this class of methods as little as possible human expertise
is required to label a small initial amount of data and the algorithms exploit the existence
of unlabeled data in order to enrich the training dataset.

The last few years, the task of automatic text classification has been extensively studied and
rapid progress seems in this area, the machine learning approaches include the use of
classifiers like Bayesian classifier (Russel, 2003), Decision Tree, K-nearest Neighbors (KNN),
Support Vector Machines (SVMs) (Cortes, 1995) and Neural Networks (McCulloch, 1943).

As an essential part of the LingTester is the Frailty predictive model, the examination of the
most common classifiers for text classification was conducted. The constructed dataset was
used to feed the classifier using only the currently optimal features.

For the model evaluation, the well known cross validation technique was deployed. Cross
validation assesses how the results of a statistical analysis will generalize to an independent
dataset. It is mainly used in settings where the goal is prediction, and one wants to estimate
how accurately a predictive model will perform in practice. In the preliminary version of the
report, due to the lack of sufficient examples (only 111 labeled instances in the dataset), the
common the Leave-one-out cross-validation (LOOCV) was used instead. In LOOCV is a
particular case of leave-p-out cross-validation with p = 1 , where a statistic on the left-out
samples is computed.

In contrast, in the final version of the LingTester prototype the frailty dataset was already bigger
than double of the initial (~400 instances) and with a lot more features, thus the 10 Fold Cross
Validation technique was used in order to obtain more robust results. The next table
summarises the accuracies obtained by the best performing trained models.

Classifier Accuracy %

Logistic 56.756

Neural Network 56.265

Simple Logistic 61.179

SMO 56.756

KNN 53.071

RotationForest 59.950

DecisionTable 51.351

HoeffdingTree 56.019

- 25 -

FRAILSAFE – H2020-PHC–690140 D4.11

LMT 60.688

RandomForest 57.248

Table 3. Summary of classification algorithms

The final selected model used in the LingTester tool was an ensemble classifier. By utilizing a
technique known as Voting meta algorithm, we combined four of the best performing models
(Simple Logistic, RotationForest, LMT, RandomForest) by averaging their prediction
probabilities. The final classifier will be referred as VoteSRLR.

Model optimization

Before embedding VoteSRLR Classifier to the LingTester the final step of model parameter
optimization was conducted using the Weka Data mining and Classification tool (Holmes, 1994).
Specifically, the software enables the parameterization of the model using a series of twenty five
parameters, a table with the most important parameters and their description follows below.

Parameter Name Description Optimum Value

Voting Algorithm

Combination Rule The combination to rule used. Average of
Probabilities

Simple Logistic

Error On
Probabilities

Use error on the probabilities as error measure
when determining the best number of LogitBoost
iterations.

False

Weight Trim Beta Set the beta value used for weight trimming in
LogitBoost.

0.1

Heuristic Stop LogitBoost is stopped if no new error minimum
has been reached in the last Heuristic Stop
iterations.

50

RotationForest

Removed
Percentage

The percentage of instances to be removed. 50

Projection Filter The filter used to project the data. Principal
Components

- 26 -

FRAILSAFE – H2020-PHC–690140 D4.11

Classifier The base classifier to be used J48

LMT

Do Not Make Split
Point Actual Value

If true, the split point is not relocated to an actual
data value.

False

Weight Trim Beta Set the beta value used for weight trimming in
LogitBoost.

0.0

Fast Regression Use heuristic that avoids cross-validating the
number of Logit-Boost iterations at every node.

True

RandomForest

Calc Out Of Bag Whether the out-of-bag error is calculated. False

Max Depth The maximum depth of the tree, 0 for unlimited. 0

Table 4. Parameterization of the Decision Tree model

The process of model parameter optimization is a highly empirical process, although there have
been some efforts in the field, for example Auto-Weka (Thornton, 2013). In order to improve the
accuracy of LingTester the Train dataset was further investigated. After the overall model
optimization a 63.64% accuracy was achieved. Figure 5 presents the VoteSRLR model
statistics.

=== Stratified cross-validation ===

=== Summary ===

Correctly Classified Instances 259 63.64 %

Incorrectly Classified Instances 148 36.36 %

Kappa statistic 0.4331

Mean absolute error 0.3453

Root mean squared error 0.4116

Relative absolute error 79.4175 %

Root relative squared error 88.2764 %

Total Number of Instances 407

=== Detailed Accuracy By Class ===

 TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC Area Class

 0.729 0.202 0.654 0.729 0.689 0.514 0.830 0.684 nonfrail

 0.649 0.314 0.592 0.649 0.619 0.331 0.713 0.604 prefrail

 0.485 0.062 0.716 0.485 0.578 0.490 0.796 0.643 frail

Weighted Avg. 0.636 0.214 0.644 0.636 0.633 0.433 0.773 0.641

=== Confusion Matrix ===

 a b c <-- classified as

 102 34 4 | a = nonfrail

 44 109 15 | b = prefrail

 10 41 48 | c = frail

- 27 -

FRAILSAFE – H2020-PHC–690140 D4.11

Figure 5. Model statistics

5.3 Semi-supervised learning
As the first versions of the frailty datasets that were available were very small in size, the
semi-supervised methodology was tried in order to enrich and the labeled instances with new
unlabeled data. The detailed process of the task is presented in D4.13. In this subparagraph, as
this a more technical report we will present the tools used to accomplish the task.

The first step of the procedure involved the collection and organization of the data gathered in
D4.7 that were crawled from twitter. The offline-parser python script was accordingly extended
to support the construction of mixed Labeled and Unlabeled datasets. The exact implementation
can be found in the annexes section (13.1).

To proceed to the second step, as the WEKA tool does not support semi-supervised algorithms,
we selected the research tool known as KEEL and its package named SSL for keel. All the
mentioned software is open source . 1

As all our datasets and initial organization was around weka and its arff format in contrast with
the standard keel format mentioned as dat, the need for development of middleware set of tools
emerged. In brief the middleware programs we developed are:

● Randomize-arff: A php script that has as input an arff file and saves as output a new
dataset with its instances in random order.

● Weka2keel: A java program that has as input a weka formatted dataset and produces its
keel formatted equivalent.

● Unlabelize: A php script that reads a folder containing the keel formatted datasets, plus
a user defined label ratio and creates the final keel dataset that combines labeled and
unlabeled instances for use with semi-supervised algorithms.

Proceeding to the KEEL tool itself the main menu of the tools follows below in the left.

1 http://sci2s.ugr.es/SelfLabeled

- 28 -

FRAILSAFE – H2020-PHC–690140 D4.11

After the transformation of the weka dataset in the keel format, the Data Management (right
image above) option of keel was used to divide the dataset in 10 Fold to be used in 10-Cross
validation. The resulting datasets follow in the table below

Dataset name Labeled ratio Labeled
instances

Unlabeled
instances

semi-frailty-10 10% 178 1600

semi-frailty-20 20% 178 712

semi-frailty-30 30% 178 415

semi-frailty-40 40% 178 267

The full semi-supervised scenario experiment was built using the experiment designer (image
1). The scenario consists of:

● The four datasets, labeled ratios:
○ 10%,
○ 20%,
○ 30%,
○ 40%

● The five semi-supervised algorithms
○ SelfTraining
○ CoForest
○ CoTraining
○ TriTraining

- 29 -

FRAILSAFE – H2020-PHC–690140 D4.11

○ RASCO
● Five calculation elements that gather and produce the final results for each

algorithm

Image 1. KEEL Scenario

The execution of the scenario, as it is a relatively heavy load for a GUI program, is done through
a console java program named RunKeel (image 2).

- 30 -

FRAILSAFE – H2020-PHC–690140 D4.11

Image 2. Execution of the scenario through RunKeeL

The detailed presentation and analysis of the semi-supervised models built, are a subject of
deliverable D4.13.

5.4 Conclusions

In this Chapter, effort has been made to present briefly and in a more technical manner, the
`brain’ of the offline LingTester tool. The chapter is considered complementary with chapters 4
and 5 of D4.13.

Concerning the final frailty prediction model, the obtained accuracy of 63.64% by the complex
VoteSRLR, taking into account the difficulty of the frailty problem and its niche (in the sense of
strict) medical data, is considered to be a good outcome. Under certain assumptions and
simplifications as stated in D4.13 the accuracy increased in the levels of 83.68% . Further

- 31 -

FRAILSAFE – H2020-PHC–690140 D4.11

increase in the dataset population, in the future of the FrailSafe project timeline, could result in
better decision accuracies, as VoteSRLR model seems to have a strong learning capacity. The
potential of the `brain’ of the offline LingTester tool is strictly bound to the quality and size of the
available dataset.

7. System development

7.1 Software used for training and prediction
Software development was based on various programming languages along with the use of
third party tools, for both database management, creating models and predicting results. First
steps of database management and export tools are based on Python (see Annex 12.1
Database management & feature extraction), while the use of the prediction model is based on
a Java implementation (see Annex 12.2 Prediction model). Both programming languages are
operating system independent, meaning that upon successful installation of Python console for
the first, and Java Virtual machine for the later, provided programmes may start processing.

Furthermore, all third party tools within the discussed methodology should be provided. Firstly,
the Greek POS tagger is a third party tool that needs Java Virtual Machine to run. It can be
downloaded from the official site of Natural Language Processing Group at Department of
Informatics - Athens University of Economics and Business . It is executed automatically from 2

the Python script, whenever we request POS information for existing or new patient data.

For the classification process WEKA suite was used. Weka is a collection of machine learning
algorithms for data mining tasks. The algorithms can either be applied directly to a dataset or
called from your own Java code. Weka contains tools for data pre-processing, classification,
regression, clustering, association rules, and visualization. It is also well-suited for developing
new machine learning schemes. In the following section, we discuss steps to reproduce all
installations steps.

7.2 Installation notes for training and prediction
Extra steps must be carried out so as for all submodules to work correctly, for the current state
of LingTester. While the following submodules are platform independent, this doesn’t mean that
steps are also the same. Each platform may request different dependencies, but this analysis
will assume Linux as the underlying operating system. These are the main parts:

● Python core and Python modules
● Java Virtual Machine
● POS Tagger

2 http://nlp.cs.aueb.gr/software.html

- 32 -

FRAILSAFE – H2020-PHC–690140 D4.11

● OpenOffice dictionaries
● Weka

7.2.1 Python core and Python modules
Python is preinstalled in all Linux distros. However, we must install some extra modules. The
following modules can be easily installed using the pip package, by issuing a command of
type sudo pip install {module} for each module. These instructions are also described
within the source code. The modules are:

1. pyenchant, for the translation service
2. httplib2, to request access to the MyMemory service through http protocol
3. nltk, to export tf-idf features
4. pattern, to export sentiment features in english

7.2.2 Java Virtual Machine (JVM)
In order to download and install the Java Virtual Machine, user must navigate to the download
page , click Download and execute the downloaded file. Installation will automatically finalise.

3

JVM is needed in order to execute both the ready made model and the POS tagger, in case it is
needed for new data.

7.2.3 POS Tagger
POS tagger is available for download from the official page . Assuming JVM works as expected,

4

downloading and installing all files as stated in the readme file from the downloaded archive is
all that is needed to have access to this service.

7.2.4 OpenOffice dictionaries
While pyechant python module gives access to the speller of OpenOffice, we have to install
the speller for each language, in case it is not already installed. In Linux, we can install new
dictionaries by issuing in the command line the command sudo apt-get install

myspell-gr-el . In case we have a different package manager, we issue the install command
for the myspell-gr-el package.

3 https://www.java.com/en/
4 http://nlp.cs.aueb.gr/software.html

- 33 -

FRAILSAFE – H2020-PHC–690140 D4.11

7.2.5 Weka
We can easily download and install WEKA by navigating to the page official and 5

following the detailed steps in that page, according to our operating system.

7.3 Uploading existing data
All aforementioned data was internally manipulated in a custom-built database consisted in text
files. However, within Work Package 4 it was necessary all data provided from eCRF and
extracted features were available to the DSS module. As a result, data can be automatically
updated through the execution of the updateTextToNoSQL function in offline-parse.py

file , found in Annex Database management & feature extraction of the D4.11.

8. Frailsafe user software

8.1 Steps to import new data
There are two reasons to import new data within our offline database. First one is to populate
new training data and reconstruct the prediction model, a process which cannot be done outside
laboratory or by non technical persons. The reason for this, is that a full installation of WEKA is
needed along with various parameters that make this procedure not feasible for everyday use.
The second reason is to use the model that has already been trained and exported for easy use
(see next chapter). For this to work, we execute the secondary file offline-parser-ui.py through
the console, python offline-parser-ui.py , and the following menu appears:

1. Validate corpus and print statistics: This option goes through each patient data, and
validates there are no missing or not accepted information

2. Print all patient data: This option requests a patient id from the user, and dumps all
patient data within the console for easy access.

3. Create new patient data: This option will start by asking the ID of the new patient data
and in case this ID already exists, then an error is shown to the user and he has to start
over. This validation is needed in order to avoid overwriting existing data by accident.

4. Update database with missing translations: As the name suggests, this option will
automatically update any missing translations

5. Update database with missing POS data: Also, as the name suggests, this will update
whole database with any missing POS data for future use.

6. Export patient data for prediction: This option requests a patient id from the user and
then creates the ARFF that is needed in order for the prediction model to work correctly
(see next chapter).

7. Exit: This will force for the application to terminate

5 http://www.cs.waikato.ac.nz/ ml/weka/downloading.html

- 34 -

FRAILSAFE – H2020-PHC–690140 D4.11

As this tool, is also Python based, it is cross-platform. However, this doesn’t mean it can work
out of the box. Extra steps need to be done in order for all submodule operate normally (See
Installation Notes, under System development chapter).

Image 3. Screenshot of real time operation

8.2 Steps to export results
In order to for the FrailSafe user to obtain predictions for a number of subjects, a java software
package was developed. The official name of the package is Predictor due to the task assigned
to it.

The Predictor is a cross-platform command line tool that expects as input an arff file containing
the pre-processed collected data of the subjects exported by the user using the Offline-parser-ui
tool. Currently only the default ``in.arff’’ can be used and Predictor expects it in the current
working directory. An example input file structure is presented in the following figure.

- 35 -

FRAILSAFE – H2020-PHC–690140 D4.11

Image 4. Input file structure

In order for the Predictor not be computationally expensive, the training of the classifier at
runtime of the tool was intentionally avoided. Instead, a pre-computed model of the classifier is
delivered with the software package and is loaded by the tool.

The detailed program algorithm of the Predictor tool is presented below.

 Predictor tool algorithm

 Input:

Load the pretrained model (M)
Load the Test dataset (T)

Count the number of test instances (N)
Loop for N

Predict Instance T(i)
Print prediction for T(i)

- 36 -

FRAILSAFE – H2020-PHC–690140 D4.11

Software tool usage instructions:
1. Open a terminal inside the deliverables root directory
2. Run the command java -jar predictor-cli.jar

Notes: The user’s system should use java version 1.6.0 or higher.

It is recommended to use the -Xmx2g java parameter if the input arff file has more
than a few thousand instances.

Image 5. Screenshot of prediction programme while executing

- 37 -

FRAILSAFE – H2020-PHC–690140 D4.11

9. Ethics and Safety

Throughout this study’s methodology, special care has been taken for ethical and safety issues.
Τhe nature of the study requires the processing, storing and analysis of a large amount of data.
In all these stages, confidentiality and personal data protection will be reassured by an
anonymization procedure. Each participant is traced solely by his/her ID, provided initially by the
recruitment center, a number and only this, with no identifiable personal data, will be exposed to
large scale data exchange like name, date of birth, place of living. Access to the database have
only specific people, researchers, in order to create the prediction models.

The data persistence and analysis will comply with the data protection guidelines reported in
deliverable "D9.9: Ethics, Safety and Health Barriers" (Section 6) with the aim of, at same time,
keeping the maximum level of security and privacy of the data and allowing the successful
performance of the other tasks of the project. Moreover, data will be obtained in accordance to
the local ethics requirements. Any information regarding the participants will be treated as
sensitive personal data (as defined in deliverable D9.9) and kept strictly private. Future provided
data will be thoroughly checked by semi-automatic algorithms in order to anonymize any
personal identifiers like full names, dates, emails, communication cellphone or landline numbers
– hence falling outside the scope of legislation concerning personal data.

- 38 -

FRAILSAFE – H2020-PHC–690140 D4.11

10. References

● A survey of text classification algorithms CC Aggarwal, CX Zhai - Mining text data, 2012
- Springer

● Gerard Salton, Edward A. Fox, and Harry Wu. 1983. Extended Boolean information
retrieval. Commun. ACM 26, 11 (November 1983), 1022-1036.
DOI=http://dx.doi.org/10.1145/182.358466

● Eibe, F., Mark, A. Hall, and Ian, H. Witten (2016). The WEKA Workbench. Online
Appendix for "Data Mining: Practical Machine Learning Tools and Techniques", Morgan
Kaufmann, Fourth Edition, 2016.

● K. Denecke, "Using SentiWordNet for multilingual sentiment analysis," Data Engineering
Workshop, 2008. ICDEW 2008. IEEE 24th International Conference on, Cancun, 2008,
pp. 507-512. doi: 10.1109/ICDEW.2008.4498370

● Koleli, E. A new Greek part-of-speech tagger, based on a maximum entropy classifier.
Diss. Thesis, Athens University of Economics, 2011.

● Tsakalidis, A., Papadopoulos, S. and Kompatsiaris I. (2014) An Ensemble Model for
Cross-Domain Polarity Classification on Twitter. Proceedings of 15th International
Conference on Web Information Systems Engineering (WISE 2014), LNCS, Part II, pp.
168-177, Thessaloniki, Greece, October 12-14, 2014, Springer

● Gareth James; Daniela Witten; Trevor Hastie; Robert Tibshirani (2013). An Introduction
to Statistical Learning. Springer.

● Bermingham, Mairead L.; Pong-Wong, Ricardo; Spiliopoulou, Athina; Hayward, Caroline;
Rudan, Igor; Campbell, Harry; Wright, Alan F.; Wilson, James F.; Agakov, Felix;
Navarro, Pau; Haley, Chris S. (2015). "Application of high-dimensional feature selection:
evaluation for genomic prediction in man". Sci. Rep.

● Pearl, J. Heuristics: Intelligent Search Strategies for Computer Problem Solving.
Addison-Wesley, 1984.

● Khachaturyan, A.; Semenovskaya, S.; Vainshtein, B. (1979). "Statistical-Thermodynamic
Approach to Determination of Structure Amplitude Phases". Sov.Phys. Crystallography.

● Mitchell, Melanie (1996). An Introduction to Genetic Algorithms. Cambridge, MA: MIT
Press.

● Geisser, Seymour (1993). Predictive Inference. New York, NY: Chapman and Hall.
● Mitchell, Tom M. (1997). Machine Learning. The Mc-Graw-Hill Companies, Inc.
● Duda, Richard O.; Hart, Peter E.; Stork, David G. (2001). "Unsupervised Learning and

Clustering". Pattern classification (2nd ed.). Wiley.
● Russell, Stuart; Norvig, Peter (2003) [1995]. Artificial Intelligence: A Modern Approach

(2nd ed.). Prentice Hall.
● Cortes, C.; Vapnik, V. (1995). "Support-vector networks". Machine Learning.
● McCulloch, Warren; Walter Pitts (1943). "A Logical Calculus of Ideas Immanent in

Nervous Activity". Bulletin of Mathematical Biophysics.

- 39 -

FRAILSAFE – H2020-PHC–690140 D4.11

● G. Holmes; A. Donkin; I.H. Witten (1994). «Weka: A machine learning workbench». Proc
Second Australia and New Zealand Conference on Intelligent Information Systems,
Brisbane, Australia.

● Chris Thornton, Frank Hutter, Holger Hoos, and Kevin Leyton-Brown, Auto-WEKA:
Combined Selection and Hyperparameter Optimization of Classification Algorithms. In
Proc. of KDD 2013

● Everitt B.S. (2002) Cambridge Dictionary of Statistics, CUP.
● Chapelle, Olivier; Schölkopf, Bernhard; Zien, Alexander (2006). Semi-supervised

learning. Cambridge, Mass.: MIT Press.
● Ratsaby, J. and Venkatesh, S. Learning from a mixture of labeled and unlabeled

examples with parametric side information. In Proceedings of the Eighth Annual
Conference on Computational Learning Theory, pages 412-417 (1995).

- 40 -

FRAILSAFE – H2020-PHC–690140 D4.11

11. Source files
These are the files that accompany this deliverable:

● Folder: demo
○ File: frailsafe.model

■ Pre-trained prediction model
○ File: in.arff

■ Test input data. This is a text file structured like figure 11. For more
details, please see chapter 8.1

○ File: predictor-cli.jar
■ This java software uses the pre-trained prediction model in order to

predict patients' mental state from test data found in file in.arff(6 patients'
test data after feature extraction).

○ File: README.txt
■ Readme file of how to execute the java file

● Folder: source code
○ File: PredictorCLI.java

■ Source code of the demo predictor-cli.jar file
○ File: offline-parser.py
○ File: offline-parser-ui.py

■ Source file in Python that manage the offline database while also support
the feature extraction process

- 41 -

FRAILSAFE – H2020-PHC–690140 D4.11

12. Annexes

12.1 Database management & feature extraction
The following are the contents of the base Python library with various functions that help utilise
the offline database in its full extent.

#!/usr/bin/python
-*- coding: utf-8 -*-

To install execute: pip install pyenchant

"""

@author: Charalampos Tsimpouris
@author: Nikolaos Fazakis

"""

import enchant

To install execute: pip install httplib2

import httplib2
import json
import math
import urllib

To install execute: pip install nltk

import nltk

import os
import pickle

To install execute: pip install pattern

from pattern.en.wordnet import sentiment

import re
import stemming
import shutil
import subprocess

import matplotlib.pyplot as plt
from textstat.textstat import textstat

import downloader as ecrf

py-translate Cannot work
it uses, free google services and is easilly blocked
import translate

Google API
cannot be used, only with billing plans

from google.cloud import translate

nosql_api = 'http://172.16.2.50:5050'

import warnings
from sklearn.feature_extraction.text import
TfidfVectorizer

This is the path where all patient data is stored
.. one file per patient, with file name from the patient id

data_path = './Data'

frailsafe_google_api_key = '???????'

MyMemory Translation
.. these are basic settings for the translation service

mymemory_account_email = 'kifinas.uop@gmail.com'
mymemory_base_url =
u'http://api.mymemory.translated.net/get'

These tags must always exist
.. along with the availiable tags
.. and they are class tags

verify_tags = {}
verify_tags['-transcript'] = ('yes', 'no')
verify_tags['-sex'] = ('male', 'female')
verify_tags['-tag'] = ('nonfrail', 'prefrail', 'frail')
verify_tags['-language'] = ('greek', 'greek-polytonic',
'greek-cypriot'
 , 'french', 'english')
verify_tags['-source'] = ('questionnaire', 'twitter-untagged')

verify_tags['-habitation_zone'] = ('urban', 'semi-urban', 'rural')
verify_tags['-family_status'] = ('married or in a relationship',
 'single', 'divorced', 'widow')
verify_tags['-have_you_changed_your_security_settings_in_
social_media_in_order_to_protect_your_personal_data'
] = ('yes', 'no')
verify_tags['-do_you_consider_yourself_a_familiar_user_of_
social_media'
] = ('beginner', 'less familiar', 'very familiar')

Languge convert helper dictionaries for various reasons

langs = {}

- 42 -

FRAILSAFE – H2020-PHC–690140 D4.11

langs['english'] = 'en'
langs['greek'] = 'el'
langs['greek-polytonic'] = 'el'
langs['greek-cypriot'] = 'el-cy'
langs['french'] = 'fr'

langs_speller = {}
langs_speller['english'] = 'en'
langs_speller['greek'] = 'el_GR'
langs_speller['greek-polytonic'] = 'el_GR'
langs_speller['greek-cypriot'] = 'el_GR'
langs_speller['french'] = 'fr_FR'

These tags are multi line
.. and make the multi text that we try to classify from

multi_line_tags = ['-desc_image', '-desc_event', '-prev_text']

Part of speech info, in case there is one

multi_line_tags_POS = ['-desc_image_POS',
'-desc_event_POS',
 '-prev_text_POS']

English translation of the initial text

multi_line_tags_ENG = ['-desc_image_ENG',
'-desc_event_ENG',
 '-prev_text_ENG']

def sortedDictValues(adict, reverse_order=True):
 """
 Taksinomisi leksikou, simfwna me to "value"
 http://wiki.python.org/moin/HowTo/Sorting/
 """

 ret = []
 for k in adict:
 ret.append((k, adict[k]))

 ret = sorted(ret, key=lambda tdf: tdf[1],
reverse=reverse_order)

 return [page[0] for page in ret]

def split_list():
 """This function tries to split the main initial patient
 list in a simplistic way.
 Caution, detroyes existing data.
 """

 f = open(data_path + '/lists.txt', 'r')
 lines = f.readlines()
 f.close()

 patients = {}
 for line in lines:
 if not line.startswith('-patient'):
 continue

 (tag, pid) = line.strip().split(' ')
 if pid in patients:
 print 'Patient %s already set' % pid
 print 'Aborting'
 return
 patients[pid] = line

 cpid = None
 pdata = []

 for line in lines:
 line = line.strip()

 if line.startswith('-patient'):
 if cpid is not None:
 f = open(data_path + '/p.%s.txt' % cpid, 'w')
 f.write('\n'.join(pdata).strip() + '\n')
 f.close()

 pdata = []
 (tag, cpid) = line.strip().split(' ')

 pdata.append(line)

 if cpid is not None:
 f = open(data_path + '/p.%s.txt' % cpid, 'w')
 f.write('\n'.join(pdata).strip() + '\n')
 f.close()

def my_sort(x, y):
 return int(x) - int(y)

def fetch_patient_ids(only_local = False):
"""Identifies all patient ids, as stated in the filenames
"""
files = os.listdir(data_path)
out_files = []
for f in files:
if not f.startswith('p.') or not f.endswith('.txt'):
continue

pre, pid, suf = f.strip().split('.')

if only_local and (int(pid) < 1000 or int(pid) >= 4000):
continue
out_files.append(pid)

return sorted(out_files, cmp = my_sort)
out_files.sort()
return out_files

def fetch_patient_visits(only_local=False):
 """Identifies all patient ids, as stated in the filenames
 """

 files = os.listdir(data_path)
 out_files = {}
 for f in files:

- 43 -

FRAILSAFE – H2020-PHC–690140 D4.11

 if not f.startswith('p.') or not f.endswith('.txt'):
 continue

 parts = f.strip().split('.')
 if len(parts) == 3:
 (pre, pid, visit, suf) = (parts[0], parts[1], 1, parts[2])
 elif len(parts) == 4:
 (pre, pid, visit, suf) = (parts[0], parts[1], parts[2],
 parts[3])
 else:
 print 'Unable to load file %s' % f
 continue

 if only_local and (int(pid) < 1000 or int(pid) >= 4000):
 continue

 if not pid in out_files:
 out_files[pid] = []

 out_files[pid].append(int(visit))

 return out_files

def export_twitter_untagged_to_files():
 t_id = 100000

 files = os.listdir(data_path)
 for f in files:
 if not f.startswith('twitter-untagged.') \
 or not f.endswith('.txt'):
 continue

 print 'Working on %s' % f
 (pre, lang, suf) = f.strip().split('.')

 fl = open(data_path + '/' + f)
 lines = fl.readlines()
 fl.close()

 for l in lines:
 if l.strip() == '':
 continue
 if l.strip().startswith('||RT'):
 continue

 t_id += 1

 # Remove the || at the end

 l = l.replace('||', '')

 ret = {}
 ret['-source'] = 'twitter-untagged'
 ret['-transcript'] = 'no'
 ret['-sex'] = 'na'
 ret['-tag'] = 'na'
 ret['-language'] = lang
 ret['-desc_event'] = l

 save_patient_data(t_id, ret)

def fetch_patient_data(cpid, visit=1):
 """Tries to load all patient data, based on the id
 """

 try:
 if visit == 1:
 f = open(data_path + '/p.%s.txt' % cpid, 'r')
 else:
 f = open(data_path + '/p.%s.%02d.txt' % (cpid, visit),
'r')
 lines = f.readlines()
 f.close()
 except:
 print 'Error opening patient data file %s' % cpid
 return {}

 ret = {}
 ctag = None
 for line in lines:
 line = line.strip()
 if line == '':
 continue

 if line.startswith('-'):
 if ctag:
 ret[ctag] = ret[ctag].strip()

 if line.find(' ') > 0:
 ctag = line[:line.find(' ')].strip()
 info = line[line.find(' ') + 1:].strip()
 else:
 ctag = line
 info = ''
 ret[ctag] = ''
 ret[ctag] += info
 continue

 ret[ctag] += line + '\n'
 if ctag:
 ret[ctag] = ret[ctag].strip()

 if not '-source' in ret:
 ret['-source'] = 'questionnaire'
 return ret

def save_patient_data(cpid, cpdata, visit=1):
 """Saves all patient data in a file
 """

 if int(visit) == 1:
 f = open(data_path + '/p.%s.txt' % cpid, 'w')
 else:
 f = open(data_path + '/p.%s.%02d.txt' % (cpid,
int(visit)), 'w')

 cpdata['-patient'] = cpid

 for tag in cpdata:

- 44 -

FRAILSAFE – H2020-PHC–690140 D4.11

 if cpdata[tag] is None:
 cpdata[tag] = ''

 if tag in multi_line_tags or tag in multi_line_tags_POS
or tag \
 in multi_line_tags_ENG:
 f.write('''%s

''' % tag)
 f.write(cpdata[tag].strip())
 f.write('''

''')
 continue

 f.write('%s %s\n' % (tag, str(cpdata[tag]).strip()))
 f.close()
 return cpdata

def print_patient_data(pdata):
 """Tries to print all patient data, as beautiful as it can
 """

 for k in pdata:
 print '%s:%s' % (k, pdata[k])

def get_last_avail(
 vals,
 vis_a,
 tag,
 default='',
 vis_b=1,
):
 if vis_a in vals:
 if tag in vals[vis_a]:
 return vals[vis_a][tag]

 if vis_b in vals:
 if tag in vals[vis_b]:
 return vals[vis_b][tag]

 return default

def validate_patient_data(only_local=False):
 """Validates there are no missing tags
 in all patient files, around the required ones
 Also, it tries to print some minor statistics
 """

 pids = fetch_patient_visits(only_local)
 ecrf_tags = getECRFTags()

 stats = {}
 prev_texts = 0
 so_far = 0
 for cpid in pids:
 so_far += 1
 if so_far % 1000 == 1:

 print '.',

 for visit in pids[cpid]:
 cpdata = fetch_patient_data(cpid, visit)

 for t in verify_tags:
 valid = verify_tags[t]
 if not t in cpdata or cpdata[t] is None or cpdata[t] \
 == '':
 print 'Patient %s (visit %d) is missing %s data' \
 % (cpid, visit, t)
 continue

 if t == 'tag' and cpdata[t] not in valid:
 print 'Patient %s (visit %d) has invalid %s data
%s' \
 % (cpid, visit, t, cpdata[t])
 continue

 if not t in stats:
 stats[t] = {}
 stats[t][cpdata[t]] = stats[t].get(cpdata[t], 0) + 1

 for t in ecrf_tags:
 tin = '-' + correct_title_for_arff(t)

 if not tin in cpdata or cpdata[tin] is None \
 or cpdata[tin] == '':
 continue

 if t == 'tag' and cpdata[t] not in valid:
 print 'Patient %s has invalid %s data %s' %
(cpid,
 t, cpdata[t])
 continue

 if not tin in stats:
 stats[tin] = {}
 stats[tin][cpdata[tin]] = stats[tin].get(cpdata[tin],
 0) + 1

 text = ''
 for m in multi_line_tags:
 text += cpdata.get(m, ' ')

 text = text.strip()
 if text == '':
 stats['-language'][cpdata['-language'] + '-empty'] = \
 stats['-language'].get(cpdata['-language']
 + '-empty', 0) + 1

 if cpdata.get('-prev_text', '').strip() != '':
 prev_texts += 1

 break

 print 'Checked %d patients, and here are the statistics' %
len(pids)
 for t in stats:
 print t
 for k in stats[t]:

- 45 -

FRAILSAFE – H2020-PHC–690140 D4.11

 print ' %s:%d' % (k, stats[t].get(k, 0))

 print 'Number of patients that provided writen texts, from
previous times: %d' \
 % prev_texts

def clean_up_text(text, lang='english'):
 """Tries to clean up text, as much as possible
 in some ways language inndipendantly
 in some ways not
 """

 new_list = []

 text = text.replace('.', '. ')

 # Minor clean up per language

 if lang.startswith('greek'):
 text = clean_greek_letters(text)
 elif lang == 'french':
 text = clean_french_letters(text)

 text = upper(text)

 words = get_words(text)
 for w in words:
 if len(w) <= 3:
 continue

 w = stemming.stem(w)

 new_list.append(w)

 return ' '.join(new_list)

def create_arff(
 relation='fraildata',
 includeTFIDF=True,
 includePOS=True,
 only_local=False,
 TFIDF_thres=20,
 ngram_range_select=(1, 2),
):
 """Create arff for WEKA with all features availiable
 """

 out = []
 out.append('@RELATION %s' % relation)
 out.append('')

 out.append('%% %s: %s' % ('Differential', 'no'))
 params = locals()
 for p in params:
 if p != 'out':
 out.append('%% %s: %s' % (p, params[p]))
 out.append('')

 basic_tags = []

 for t in verify_tags:
 tag = t.lstrip('-')
 if tag == 'tag':
 continue
 basic_tags.append(t)
 valid = verify_tags[t]
 out.append('@ATTRIBUTE %s {%s}' % (tag,
 ','.join(valid).replace(' ', '-')))

 other_attributes = []
 other_attributes.append('get_feature_length')

other_attributes.append('get_feature_number_of_sentences'
)
 other_attributes.append('get_feature_word_count')

other_attributes.append('get_feature_words_per_sentence')

other_attributes.append('get_feature_text_shannon_entropy'
)

 for attr in other_attributes:
 out.append('@ATTRIBUTE %s %s' % (globals()[attr]('',
'title'),
 globals()[attr]('', 'type')))

 # from eCRF

 ecrf = []
 ecrf.append('get_ecrf_year_of_birth')

ecrf.append('get_ecrf_how_often_do_you_connect_to_the_i
nternet_per_week'
)

ecrf.append('get_ecrf_how_many_people_do_you_follow_on
_twitter')

ecrf.append('get_ecrf_how_many_follower_you_have_on_tw
itter')

ecrf.append('get_ecrf_how_many_friends_contacts_do_you
_have_on_facebook'
)

 for attr in ecrf:
 out.append('@ATTRIBUTE %s %s' % (globals()[attr]('',
'title'),
 globals()[attr]('', 'type')))

 read_scores = []
 read_scores.append('flesch_reading_ease')
 read_scores.append('smog_index')
 read_scores.append('flesch_kincaid_grade')
 read_scores.append('coleman_liau_index')
 read_scores.append('automated_readability_index')
 read_scores.append('dale_chall_readability_score')
 read_scores.append('difficult_words')
 read_scores.append('linsear_write_formula')
 read_scores.append('gunning_fog')
 for attr in read_scores:

- 46 -

FRAILSAFE – H2020-PHC–690140 D4.11

 out.append('@ATTRIBUTE %s %s' % (attr, 'real'))

 for tag in multi_line_tags_ENG:
 out.append('@ATTRIBUTE %s %s' % (tag.lstrip('-') +
'_sentiment'
 , 'real'))

 for tag in multi_line_tags:
 out.append('@ATTRIBUTE %s %s' % (tag.lstrip('-') +
'_misspelled'
 , 'real'))

 corpus = get_corpus_visits(only_local)
 filename = 'ARFFS/%s.arff' % relation

 labels = []
 for cpid in corpus:
 labels.append(cpid)

 text_POS = []
 if includePOS:
 for cpid in corpus:
 for visit in [3, 2, 1]:
 if not visit in corpus[cpid]:
 continue

 if get_last_avail(corpus[cpid], visit, 'tag', 'na') \
 == 'na':
 continue

 pos_data =
pos_explode_data(corpus[cpid]['text_POS'])
 temp_pos_as_text = []

 # ta panta ola

 for (word, ps) in pos_data:
 temp_pos_as_text.append('8'.join(ps))

 # 1:1 mono ta prwta

 for (word, ps) in pos_data:
 temp_pos_as_text.append(ps[0])

 # 1:1 mono ta prwta/deftera

 for (word, ps) in pos_data:
 temp_pos_as_text.append('8'.join(ps[0:1]))

 # 1:1 mono ta prwta/deftera/trita

 for (word, ps) in pos_data:
 temp_pos_as_text.append('8'.join(ps[0:2]))

 # 1:1 mono ta deftera

 for (word, ps) in pos_data:
 temp_pos_as_text.append(ps[0])

 # 1:1 mono ta trita

 for (word, ps) in pos_data:
 temp_pos_as_text.append(ps[0])

 text_POS.append('
'.join(temp_pos_as_text).replace('-',
 ''))

 # Only first avail visit

 break

 # TF-IDF on POS data

 tf_POS = TfidfVectorizer(analyzer='word',
ngram_range=(1, 2),
 min_df=0)
 tfidf_matrix_POS = tf_POS.fit_transform(text_POS)
 feature_names_POS = tf_POS.get_feature_names()

 fp = open(filename + '.tf_POS.pickle', 'w')
 pickle.dump({'tf_POS': tf_POS,
 'tfidf_matrix_POS': tfidf_matrix_POS,
 'feature_names_POS': feature_names_POS},
fp)
 fp.close()

 for i in range(len(feature_names_POS)):
 out.append('@ATTRIBUTE tf-pos-%d real %% %s' %
(i, 'POS: '
 + feature_names_POS[i]))

 # The following creates an "array to big" error
 # dense_POS = tfidf_matrix_POS.todense()

 texts = []
 if includeTFIDF:
 if only_local:
 texts_per_group = {'nonfrail': [], 'prefrail': [],
 'frail': []}
 for cpid in corpus:
 for visit in [3, 2, 1]:
 if not visit in corpus[cpid]:
 continue

 mytag = get_last_avail(corpus[cpid], visit, 'tag',
 'na')
 if mytag == 'na':
 continue

 # Per language
 # texts_per_group[mytag
].append(corpus[cpid][visit]['clean_text'])

 # In english

texts_per_group[mytag].append(corpus[cpid][visit]['text_ENG
'
])
 break
 else:

- 47 -

FRAILSAFE – H2020-PHC–690140 D4.11

 texts_per_group = {
 'nonfrail': [],
 'prefrail': [],
 'frail': [],
 'na': [],
 }
 for cpid in corpus:
 mytag = get_last_avail(corpus[cpid], visit, 'tag',
'na')

texts_per_group[mytag].append(corpus[cpid]['clean_text'
])

 (s, score_words) = compute_ig(texts_per_group,
filename
 + '.ig.png')
 mywords = s[:TFIDF_thres]

 for cpid in corpus:
 for visit in [3, 2, 1]:
 if not visit in corpus[cpid]:
 continue

 temptext = corpus[cpid][visit]['clean_text']
 temptext_out = []
 for word in temptext.split(' '):
 if word != '' and word in mywords:
 temptext_out.append(word)

 texts.append(' '.join(temptext_out))

 break

 # TF-IDF on stemmed text

 tf = TfidfVectorizer(analyzer='word',
 ngram_range=ngram_range_select,
min_df=0)
 tfidf_matrix = tf.fit_transform(texts)
 feature_names = tf.get_feature_names()

 fp = open(filename + '.tf.pickle', 'w')
 pickle.dump({
 'tf': tf,
 'tfidf_matrix': tfidf_matrix,
 'feature_names': feature_names,
 's': s,
 'score_words': score_words,
 'mywords': mywords,
 }, fp)
 fp.close()

 for i in range(len(feature_names)):
 out.append('@ATTRIBUTE tf-%d real %% %s' % (i,
 feature_names[i]))

 # The following creates an "array to big" error
 # dense = tfidf_matrix.todense()

 # Panta teleftaio

 tag = 'class'
 valid = ('nonfrail', 'prefrail', 'frail')
 out.append('@ATTRIBUTE %s {%s}' % (tag, ','.join(valid)))

 out.append('')
 out.append('@DATA')
 out.append('')

 print 'Creating ARFF rows',
 f = open(filename, 'w')
 f.write('\n'.join(out).encode('utf8'))
 f.write('\n')

 rows_so_far = len(labels) / 10
 for i in range(len(labels)):
 rows_so_far -= 1
 if rows_so_far <= 0:
 print '.',
 rows_so_far = len(labels) / 10

 cpid = labels[i]
 for visit in [3, 2, 1]:
 if not visit in corpus[cpid]:
 continue

 clang = corpus[cpid][visit]['data']['-language']

 # To absorb all Greek variations

 if clang.startswith('greek'):
 clang = 'greek'

 # Patients with inknown frailty tag are automatically
removed

 if not '-tag' in corpus[cpid][visit]['data']:
 print '[skipping %s]' % cpid,
 continue

 nosql_data = {}
 nosql_data_tag = '%s_%d_' % (relation, visit)
 nosql_data[nosql_data_tag + 'lang'] = clang
 nosql_data[nosql_data_tag + 'text'] = \
 corpus[cpid][visit]['text']
 nosql_data[nosql_data_tag + 'text_eng'] = \
 corpus[cpid][visit]['text_ENG']

 row = []
 for bt in basic_tags:
 if bt == '-tag':
 continue

 if corpus[cpid][visit]['data'].get(bt, 'na') == 'na':
 res = '?'
 else:
 res = corpus[cpid][visit]['data'].get(bt, '?'
).replace(' ', '-')

 row.append(res)
 nosql_data[nosql_data_tag + bt] = res

- 48 -

FRAILSAFE – H2020-PHC–690140 D4.11

 for attr in other_attributes:
 res = str(globals()[attr](corpus[cpid][visit]['text'],
 lang=clang))
 if res == 'na':
 res = '?'

 nosql_data[nosql_data_tag + attr] = res
 row.append(res)

 for attr in ecrf:
 res = str(globals()[attr](corpus[cpid][visit]['data'],
 lang=clang))
 if res == 'na':
 res = '?'

 nosql_data[nosql_data_tag + attr] = res
 row.append(res)

 for attr in read_scores:
 call = getattr(textstat, attr)
 if corpus[cpid][visit]['text'] == '':
 res = '?'
 else:
 res = str(call(corpus[cpid][visit]['text']))

 nosql_data[nosql_data_tag + attr] = res
 row.append(res)

 # Sentiment score is based in the english translation

 for tag in multi_line_tags_ENG:
 res = str(corpus[cpid][visit]['data'].get(tag
 + '_SENTIMENT_SCORE', '0'))
 nosql_data[nosql_data_tag + tag +
'_SENTIMENT_SCORE'] = \
 res
 row.append(res)

 for tag in multi_line_tags:
 res = str(corpus[cpid][visit]['data'].get(tag
 + '_MISSPELLING_SCORE', '0'))
 nosql_data[nosql_data_tag + tag +
'_SENTIMENT_SCORE'] = \
 res
 row.append(res)

 # tf-idf info based on POS data

 if includePOS:

 # p_POS = dense_POS[i].tolist()[0]

 p_POS = tfidf_matrix_POS[i, :].toarray()[0]
 for fi in range(len(feature_names_POS)):
 res = '%.3f' % p_POS[fi]
 nosql_data[nosql_data_tag + '_pos_'
 + feature_names_POS[fi]] = res
 row.append(res)

 if includeTFIDF:

 # tf-idf based on stemmed data
 # p = dense[i].tolist()[0]

 p = tfidf_matrix[i, :].toarray()[0]
 for fi in range(len(feature_names)):
 res = '%.3f' % p[fi]
 nosql_data[nosql_data_tag + '_tf_'
 + feature_names[fi]] = res
 row.append(res)

 bt = '-tag'
 if corpus[cpid][visit]['data'].get(bt, 'na') == 'na':
 res = '?'
 else:
 res = corpus[cpid][visit]['data'].get(bt, '?')

 nosql_data[nosql_data_tag + '_tag'] = res
 row.append(res)

 f.write(','.join(row).encode('utf8'))
 f.write('\n')

 updateTextToNoSQL(cpid, visit, nosql_data)

 f.close()
 print '..Done'

def create_arff_diferential(relation='fraildata'):
 """Create arff for WEKA with all features available
 with diferential features from old texts
 """

 out = []
 out.append('@RELATION %s' % relation)
 out.append('')

 out.append('%% %s: %s' % ('Differential', 'yes'))
 params = locals()
 for p in params:
 if p != 'out':
 out.append('%% %s: %s' % (p, params[p]))
 out.append('')

 basic_tags = []
 for t in verify_tags:
 tag = t.lstrip('-')
 if tag == 'tag':
 continue
 basic_tags.append(t)
 valid = verify_tags[t]
 out.append('@ATTRIBUTE %s {%s}' % (tag,
 ','.join(valid).replace(' ', '-')))

 other_attributes = []
 other_attributes.append('get_feature_length_diff')

other_attributes.append('get_feature_number_of_sentences
_diff')
 other_attributes.append('get_feature_word_count_diff')

- 49 -

FRAILSAFE – H2020-PHC–690140 D4.11

other_attributes.append('get_feature_words_per_sentence_
diff')

other_attributes.append('get_feature_text_shannon_entropy
_diff')

 for attr in other_attributes:
 out.append('@ATTRIBUTE %s %s' % (globals()[attr]('',
'', 'title'
), globals()[attr]('', '', 'type')))

 # from eCRF

 ecrf = []
 ecrf.append('get_ecrf_year_of_birth')

ecrf.append('get_ecrf_how_often_do_you_connect_to_the_i
nternet_per_week'
)

ecrf.append('get_ecrf_how_many_people_do_you_follow_on
_twitter')

ecrf.append('get_ecrf_how_many_follower_you_have_on_tw
itter')

ecrf.append('get_ecrf_how_many_friends_contacts_do_you
_have_on_facebook'
)

 for attr in ecrf:
 out.append('@ATTRIBUTE %s %s' % (globals()[attr]('',
'title'),
 globals()[attr]('', 'type')))

 read_scores = []
 read_scores.append('flesch_reading_ease')
 read_scores.append('smog_index')
 read_scores.append('flesch_kincaid_grade')
 read_scores.append('coleman_liau_index')
 read_scores.append('automated_readability_index')
 read_scores.append('dale_chall_readability_score')
 read_scores.append('difficult_words')
 read_scores.append('linsear_write_formula')
 read_scores.append('gunning_fog')
 for attr in read_scores:
 out.append('@ATTRIBUTE %s_diff %s' % (attr, 'real'))

 out.append('@ATTRIBUTE %s %s' % ('sentiment_diff',
'real'))
 out.append('@ATTRIBUTE %s %s' % ('misspelled_diff',
'real'))

 corpus = get_corpus_visits(True)
 filename = 'ARFFS/%s.arff' % relation

 labels = []
 for cpid in corpus:
 labels.append(cpid)

 # Panta teleftaio

 tag = 'frail_past'
 valid = ('nonfrail', 'prefrail', 'frail')
 out.append('@ATTRIBUTE %s {%s}' % (tag, ','.join(valid)))

 tag = 'class'
 valid = ('nonfrail', 'prefrail', 'frail')
 out.append('@ATTRIBUTE %s {%s}' % (tag, ','.join(valid)))

 out.append('')
 out.append('@DATA')
 out.append('')

 print 'Creating ARFF rows',
 f = open(filename, 'w')
 f.write('\n'.join(out).encode('utf8'))
 f.write('\n')

 rows_so_far = len(labels) / 10
 for i in range(len(labels)):
 rows_so_far -= 1
 if rows_so_far <= 0:
 print '.',
 rows_so_far = len(labels) / 10

 cpid = labels[i]

 text_cur = ''
 text_prev = ''
 clang = ''
 visit_cur = -1
 visit_prev = -1

 sent_cur = 0.0
 sent_prev = 0.0

 miss_cur = 0.0
 miss_prev = 0.0

 for visit in [3, 2, 1]:
 if not visit in corpus[cpid]:
 continue

 if clang != '':
 clang = corpus[cpid][visit]['data']['-language']

 # To absorb all Greek variations

 if clang.startswith('greek'):
 clang = 'greek'

 # Patients with inknown frailty tag are automatically
removed

 mytag = get_last_avail(corpus[cpid], visit, 'tag', 'na')
 if mytag == 'na':
 print '[skipping %s/%d]' % (cpid, visit),
 continue

 if corpus[cpid][visit]['text'].strip() == '':
 continue

- 50 -

FRAILSAFE – H2020-PHC–690140 D4.11

 # exoume keimeno

 if text_cur == '':
 text_cur = corpus[cpid][visit]['text']
 visit_cur = visit

 # Sentiment score is based in the english
translation

 for tag in multi_line_tags_ENG:
 if tag.find('prev_text') >= 0:
 continue
 else:
 sent_cur += float(corpus[cpid][visit]['data'
].get(tag + '_SENTIMENT_SCORE', '0'))

 for tag in multi_line_tags:
 if tag.find('prev_text') >= 0:
 continue
 else:
 sent_cur += float(corpus[cpid][visit]['data'
].get(tag + '_MISSPELLING_SCORE',
'0'))

 continue

 # Sentiment score is based in the english translation

 for tag in multi_line_tags_ENG:
 if tag.find('prev_text') >= 0:
 sent_prev += float(corpus[cpid][visit]['data'
].get(tag + '_SENTIMENT_SCORE', '0'))
 else:
 continue

 for tag in multi_line_tags:
 if tag.find('prev_text') >= 0:
 sent_prev += float(corpus[cpid][visit]['data'
].get(tag + '_MISSPELLING_SCORE',
'0'))
 else:
 continue
 text_prev = corpus[cpid][visit]['text']
 visit_prev = visit
 break

 if visit_cur == visit_prev or visit_cur < 0 or visit_prev <
0:
 continue

 row = []

 # Ta basic tags den allazoun pote

 for bt in basic_tags:
 if bt == '-tag':
 continue

 if corpus[cpid][1]['data'].get(bt, 'na') == 'na':
 row.append('?')

 else:
 row.append(corpus[cpid][1]['data'].get(bt, '?'
).replace(' ', '-'))

 for attr in other_attributes:
 res = str(globals()[attr](text_cur, text_prev,
lang=clang))
 if res == 'na':
 res = '?'
 row.append(res)

 for attr in ecrf:
 res = str(globals()[attr](corpus[cpid][1]['data'],
 lang=clang))
 if res == 'na':
 res = '?'
 row.append(res)

 for attr in read_scores:
 call = getattr(textstat, attr)
 if text_cur == '' or text_prev == '':
 row.append('?')
 continue

 res1 = call(text_cur)
 res2 = call(text_prev)
 row.append(str(res2 - res1))

 row.append(str(sent_cur - sent_prev))
 row.append(str(miss_cur - miss_prev))

 # Prev tag

 bt = '-tag'
 if corpus[cpid][visit_prev]['data'].get(bt, 'na') == 'na':
 row.append('?')
 else:
 row.append(corpus[cpid][visit_prev]['data'].get(bt, '?'))

 # Cur tag

 bt = '-tag'
 if corpus[cpid][visit_cur]['data'].get(bt, 'na') == 'na':
 row.append('?')
 else:
 row.append(corpus[cpid][visit_cur]['data'].get(bt, '?'))

 f.write(','.join(row).encode('utf8'))
 f.write('\n')

 f.close()
 print '..Done'

def get_corpus(only_local = False):

def get_corpus_visits(only_local=False):
 """Returns all corpus in a more scientific-friendly way
 """

 pids = fetch_patient_visits(only_local)

- 51 -

FRAILSAFE – H2020-PHC–690140 D4.11

 corpus = {}

 for cpid in pids:
 corpus[cpid] = {}
 for visit in pids[cpid]:
 corpus[cpid][visit] = {}
 cpdata = fetch_patient_data(cpid, visit)

 corpus[cpid][visit]['data'] = cpdata
 corpus[cpid][visit]['tag'] = cpdata.get('-tag', 'na')

 corpus[cpid][visit]['text'] = ''
 corpus[cpid][visit]['text_prev'] = ''
 corpus[cpid][visit]['text_cur'] = ''
 for m in multi_line_tags:
 corpus[cpid][visit]['text'] += cpdata.get(m, ' ')
 if m.find('prev_text') >= 0:
 corpus[cpid][visit]['text_prev'] += cpdata.get(m,
 ' ')
 else:
 corpus[cpid][visit]['text_cur'] += cpdata.get(m, ' '
)
 corpus[cpid][visit]['text'] = corpus[cpid][visit]['text'
].strip()
 corpus[cpid][visit]['text_prev'] = \
 corpus[cpid][visit]['text_prev'].strip()
 corpus[cpid][visit]['text_cur'] = \
 corpus[cpid][visit]['text_cur'].strip()

 corpus[cpid][visit]['text_POS'] = ''
 corpus[cpid][visit]['text_prev_POS'] = ''
 corpus[cpid][visit]['text_cur_POS'] = ''
 for m in multi_line_tags_POS:
 corpus[cpid][visit]['text_POS'] += '\n' +
cpdata.get(m,
 ' ')
 if m.find('prev_text') >= 0:
 corpus[cpid][visit]['text_prev_POS'] += '\n' \
 + cpdata.get(m, ' ')
 else:
 corpus[cpid][visit]['text_cur_POS'] += '\n' \
 + cpdata.get(m, ' ')

 corpus[cpid][visit]['text_ENG'] = ''
 corpus[cpid][visit]['text_prev_ENG'] = ''
 corpus[cpid][visit]['text_cur_ENG'] = ''
 for m in multi_line_tags_ENG:
 corpus[cpid][visit]['text_ENG'] += '\n' +
cpdata.get(m,
 ' ')
 if m.find('prev_text') >= 0:
 corpus[cpid][visit]['text_prev_ENG'] += '\n' \
 + cpdata.get(m, ' ')
 else:
 corpus[cpid][visit]['text_cur_ENG'] += '\n' \
 + cpdata.get(m, ' ')

 clang = corpus[cpid][visit]['data']['-language']

 # To absorb all Greek variations

 if clang.startswith('greek'):
 clang = 'greek'

 tutf8 = corpus[cpid][visit]['text'].decode('utf-8')
 corpus[cpid][visit]['clean_text'] = clean_up_text(tutf8,
 clang)

 return corpus

def get_feature_length(text, meta=None, lang='english'):
 if meta == 'title':
 return 'text_length'
 if meta == 'type':
 return 'integer'

 return len(text)

def get_feature_length_diff(
 text1,
 text2,
 meta=None,
 lang='english',
):
 if meta == 'title':
 return 'text_length_diff'
 if meta == 'type':
 return 'integer'

 return len(text1) - len(text2)

def get_sentences(text, lang='english'):
 """This should be language dependant to be more precise
 """

 sent_tok_file = 'greek.law.utf8.70.pickle'

 f = open(sent_tok_file)
 sent_tokenizer = pickle.load(f)
 f.close()

 return sent_tokenizer.tokenize(text.decode('utf8'))

def get_feature_number_of_sentences(text, meta=False,
lang='english'):
 """Returns a feature with number of sentences
 TODO: This has to be more elaborate
 """

 if meta == 'title':
 return 'number_of_sentences'
 if meta == 'type':
 return 'integer'

 return len(get_sentences(text, lang))

- 52 -

FRAILSAFE – H2020-PHC–690140 D4.11

def get_feature_number_of_sentences_diff(
 text1,
 text2,
 meta=False,
 lang='english',
):
 """Returns a feature with number of sentences
 TODO: This has to be more elaborate
 """

 if meta == 'title':
 return 'number_of_sentences_diff'
 if meta == 'type':
 return 'integer'

 return len(get_sentences(text1, lang)) -
len(get_sentences(text2,
 lang))

def get_ecrf_year_of_birth(cpdata, meta=False,
lang='english'):
 """Returns a feature with number of sentences
 TODO: This has to be more elaborate
 """

 if meta == 'title':
 return 'year_of_birth'
 if meta == 'type':
 return 'integer'

 return cpdata.get('-year_birth', '?')

def
get_ecrf_how_often_do_you_connect_to_the_internet_p
er_week(cpdata,
 meta=False, lang='english'):
 """Returns a feature with number of sentences
 TODO: This has to be more elaborate
 """

 if meta == 'title':
 return 'con_per_week'
 if meta == 'type':
 return 'integer'

 return
cpdata.get('-how_often_do_you_connect_to_the_internet_pe
r_week'
 , '?')

def
get_ecrf_how_many_people_do_you_follow_on_twitter(
cpdata,
 meta=False, lang='english'):
 """Returns a feature with number of sentences
 TODO: This has to be more elaborate
 """

 if meta == 'title':
 return 'twitter_follows'
 if meta == 'type':
 return 'integer'

 return
cpdata.get('-how_many_people_do_you_follow_on_twitter',
'?')

def
get_ecrf_how_many_follower_you_have_on_twitter(cpda
ta, meta=False,
 lang='english'):
 """Returns a feature with number of sentences
 TODO: This has to be more elaborate
 """

 if meta == 'title':
 return 'twitter_followers'
 if meta == 'type':
 return 'integer'

 return
cpdata.get('-how_many_follower_you_have_on_twitter', '?')

def
get_ecrf_how_many_friends_contacts_do_you_have_on
_facebook(cpdata,
 meta=False, lang='english'):
 """Returns a feature with number of sentences
 TODO: This has to be more elaborate
 """

 if meta == 'title':
 return 'fb_friends'
 if meta == 'type':
 return 'integer'

 return
cpdata.get('-how_many_friends_contacts_do_you_have_on_
facebook'
 , '?')

def get_words(text, lang='english'):
 """Splits text in words
 """

 word_tokenizer = nltk.WhitespaceTokenizer()

 # Word tokenizer, auto parses sentences
 # ..so no need to split in sentences

 return word_tokenizer.tokenize(text)

def get_feature_word_count(text, meta=False,
lang='english'):
 """Returns a feature with number of words

- 53 -

FRAILSAFE – H2020-PHC–690140 D4.11

 TODO: This has to be more elaborate
 """

 if meta == 'title':
 return 'number_of_words'
 if meta == 'type':
 return 'integer'

 return len(get_words(text, lang))

def get_feature_word_count_diff(
 text1,
 text2,
 meta=False,
 lang='english',
):
 """Returns a feature with number of words
 TODO: This has to be more elaborate
 """

 if meta == 'title':
 return 'number_of_words_diff'
 if meta == 'type':
 return 'integer'

 return len(get_words(text1, lang)) - len(get_words(text2,
lang))

def get_feature_words_per_sentence(text, meta=False,
lang='english'):
 """Returns a feature with number of words
 TODO: This has to be more elaborate
 """

 if meta == 'title':
 return 'number_of_words_per_sentence'
 if meta == 'type':
 return 'real'

 if int(get_feature_length(text)) <= 0:
 return 0

 return '%.3f' % (float(get_feature_word_count(text))
 / get_feature_number_of_sentences(text))

def get_feature_words_per_sentence_diff(
 text1,
 text2,
 meta=False,
 lang='english',
):
 """Returns a feature with number of words
 TODO: This has to be more elaborate
 """

 if meta == 'title':
 return 'number_of_words_per_sentence_diff'
 if meta == 'type':

 return 'real'

 res1 = 0
 if get_feature_number_of_sentences(text1) > 0:
 res1 = float(get_feature_word_count(text1)) \
 / get_feature_number_of_sentences(text1)

 res2 = 0
 if get_feature_number_of_sentences(text2) > 0:
 res2 = float(get_feature_word_count(text2)) \
 / get_feature_number_of_sentences(text2)
 return '%.3f' % (res1 - res2)

def get_feature_text_shannon_entropy(text, meta=False,
lang='english'):
 """Returns bits of entropy represented in a given string,
per
 http://en.wikipedia.org/wiki/Entropy_(information_theory)
 """

 if meta == 'title':
 return 'text_entropy'
 if meta == 'type':
 return 'real'

 mmap = {}
 for c in text:
 mmap[c] = mmap.get(c, 0) + 1

 text_len = get_feature_length(text)
 result = 0.0

 for c in mmap:
 freq = mmap[c] / float(text_len)
 result -= freq * (math.log(freq) / math.log(2))

 return '%.3f' % result

def get_feature_text_shannon_entropy_diff(
 text1,
 text2,
 meta=False,
 lang='english',
):
 """Returns bits of entropy represented in a given string,
per
 http://en.wikipedia.org/wiki/Entropy_(information_theory)
 """

 if meta == 'title':
 return 'text_entropy_diff'
 if meta == 'type':
 return 'real'

 mmap1 = {}
 for c in text1:
 mmap1[c] = mmap1.get(c, 0) + 1

 text_len1 = get_feature_length(text1)

- 54 -

FRAILSAFE – H2020-PHC–690140 D4.11

 result1 = 0.0

 for c in mmap1:
 freq = mmap1[c] / float(text_len1)
 result1 -= freq * (math.log(freq) / math.log(2))

 mmap2 = {}
 for c in text2:
 mmap2[c] = mmap2.get(c, 0) + 1

 text_len2 = get_feature_length(text2)
 result2 = 0.0

 for c in mmap2:
 freq = mmap2[c] / float(text_len2)
 result2 -= freq * (math.log(freq) / math.log(2))

 return '%.3f' % (result1 - result2)

def get_feature_sentiment_score(text, meta=False,
lang='english'):
 """Returns sentiment score, works based on the english
translation
 """

 if meta == 'title':
 return 'sentiment_score'
 if meta == 'type':
 return 'real'

 v = 0
 for w in text.split(' '):
 w = w.strip(',.!?)(#:;"\'').lower()
 if w in sentiment:
 v = v + sentiment[w][0] - sentiment[w][1]
 return str(v)

def get_feature_sentiment_score_diff(
 text1,
 text2,
 meta=False,
 lang='english',
):
 """Returns sentiment score, works based on the english
translation
 """

 if meta == 'title':
 return 'sentiment_score_diff'
 if meta == 'type':
 return 'real'

 v1 = 0
 for w in text1.split(' '):
 w = w.strip(',.!?)(#:;"\'').lower()
 if w in sentiment:
 v1 = v1 + sentiment[w][0] - sentiment[w][1]

 v2 = 0

 for w in text2.split(' '):
 w = w.strip(',.!?)(#:;"\'').lower()
 if w in sentiment:
 v2 = v2 + sentiment[w][0] - sentiment[w][1]

 return str(v1 - v2)

def get_feature_mispelling_score(text, meta=False,
lang='english'):
 """Returns mispelling statistics
 """

 if meta == 'title':
 return 'mispelling_score'
 if meta == 'type':
 return 'real'

 # To absorb all Greek variations

 if lang.startswith('greek'):
 lang = 'greek'

 if not lang in langs_speller:
 warnings.warn('Unknown input language: %s' %
from_lang)
 return ''
 slang = langs_speller[lang]

 word_counting = 0
 misspelled_words = 0

 d = enchant.Dict(slang)
 for w in get_words(text, lang):
 word_counting += 1
 if not d.check(w):
 misspelled_words += 1

 if word_counting <= 0:
 return '0.0'

 return '%.3f' % (float(misspelled_words) /
float(word_counting))

def get_feature_mispelling_score_diff(
 text1,
 text2,
 meta=False,
 lang='english',
):
 """Returns mispelling statistics
 """

 if meta == 'title':
 return 'mispelling_score'
 if meta == 'type':
 return 'real'

 mis1 = float(get_feature_mispelling_score(text1))
 mis2 = float(get_feature_mispelling_score(text2))

- 55 -

FRAILSAFE – H2020-PHC–690140 D4.11

 return '%.3f' % (mis1 - mis2)

def clean_greek_letters(text):
 text = text.replace(u'Α', u'α')
 text = text.replace(u'Β', u'β')
 text = text.replace(u'Γ', u'γ')
 text = text.replace(u'Δ', u'δ')
 text = text.replace(u'Ε', u'ε')
 text = text.replace(u'Ζ', u'ζ')
 text = text.replace(u'Η', u'η')
 text = text.replace(u'Θ', u'θ')
 text = text.replace(u'Ι', u'ι')
 text = text.replace(u'Κ', u'κ')
 text = text.replace(u'Λ', u'λ')
 text = text.replace(u'Μ', u'μ')
 text = text.replace(u'Ν', u'ν')
 text = text.replace(u'Ξ', u'ξ')
 text = text.replace(u'Ο', u'ο')
 text = text.replace(u'Π', u'π')
 text = text.replace(u'Ρ', u'ρ')
 text = text.replace(u'Σ', u'σ')
 text = text.replace(u'ς', u'σ')
 text = text.replace(u'Τ', u'τ')
 text = text.replace(u'Υ', u'υ')
 text = text.replace(u'Φ', u'φ')
 text = text.replace(u'Χ', u'χ')
 text = text.replace(u'Ψ', u'ψ')
 text = text.replace(u'Ω', u'ω')
 text = text.replace(u'Ά', u'α')
 text = text.replace(u'Έ', u'ε')
 text = text.replace(u'Ή', u'η')
 text = text.replace(u'Ί', u'ι')
 text = text.replace(u'Ϊ', u'ι')
 text = text.replace(u'Ό', u'ο')
 text = text.replace(u'Ύ', u'υ')
 text = text.replace(u'Ϋ', u'υ')
 text = text.replace(u'Ώ', u'ω')

 text = text.replace(u'ά', u'α')
 text = text.replace(u'έ', u'ε')
 text = text.replace(u'ύ', u'υ')
 text = text.replace(u'ί', u'ι')
 text = text.replace(u'ό', u'ο')
 text = text.replace(u'ή', u'η')
 text = text.replace(u'ώ', u'ω')
 text = text.replace(u'ϊ', u'ι')
 text = text.replace(u'ϋ', u'υ')
 text = text.replace(u'ΐ', u'ι')
 text = text.replace(u'ΰ', u'υ')

 text = text + u' '

 # text = text.replace(u'ν ', u' ') # p.x. to "ενοριαν" ginetai
"ενορια"

 text = text.replace(u'σ ', u'ς ') #
 text = text.strip()

 return text

def clean_french_letters(text):
 """Currently not implemented"""

 return text

def upper(text):
 """Capitilizes text"""

 text = text.replace(u'α', u'Α')
 text = text.replace(u'β', u'Β')
 text = text.replace(u'γ', u'Γ')
 text = text.replace(u'δ', u'Δ')
 text = text.replace(u'ε', u'Ε')
 text = text.replace(u'ζ', u'Ζ')
 text = text.replace(u'η', u'Η')
 text = text.replace(u'θ', u'Θ')
 text = text.replace(u'ι', u'Ι')
 text = text.replace(u'κ', u'Κ')
 text = text.replace(u'λ', u'Λ')
 text = text.replace(u'μ', u'Μ')
 text = text.replace(u'ν', u'Ν')
 text = text.replace(u'ξ', u'Ξ')
 text = text.replace(u'ο', u'Ο')
 text = text.replace(u'π', u'Π')
 text = text.replace(u'ρ', u'Ρ')
 text = text.replace(u'σ', u'Σ')
 text = text.replace(u'ς', u'Σ')
 text = text.replace(u'τ', u'Τ')
 text = text.replace(u'υ', u'Υ')
 text = text.replace(u'φ', u'Φ')
 text = text.replace(u'χ', u'Χ')
 text = text.replace(u'ψ', u'Ψ')
 text = text.replace(u'ω', u'Ω')

 return text

def get_pos_info(text, debug='',
 pos_directory='/media/xaris/Data/PhD/POS/bin'):
 """Tries to execute POS tagger, and retrieves the results
 from the exported file"""

 if not text or text == '':
 return ''

 # Till a better solution
 # .. everything has to be done where the java files are
 # .. so we hardcode pos_directory
 # .. but keep it as a parameter

 current_directory = os.getcwd()
 os.chdir(pos_directory)

 # this is the file where data will be stored

 in_file = pos_directory + '/in.txt'

 f = open(in_file, 'w')

- 56 -

FRAILSAFE – H2020-PHC–690140 D4.11

 f.write(text)
 f.close()

 # output file is hardcoded according to maintainer

 out_file = pos_directory + '/result.txt'

 # Keep everything clean

 f = open(out_file, 'w')
 f.write('')
 f.close()

 res = subprocess.call(['java', '-jar', 'POStagger.jar', '1',
 in_file])
 if res != 0:

 # This means that program terminated with error

 return ''

 if not os.path.exists(out_file):

 # I don't why this can happen

 warnings.warn('Output file from POS method was
empty, debug data: %s'
 % str(debug))
 return ''

 f = open(out_file, 'r')
 ret = f.readlines()
 f.close()

 # And resoter current working directory

 os.chdir(current_directory)

 return ''.join(ret)

def get_translated_data(
 data,
 from_lang,
 to_lang='en',
 debug='',
):
 """Tries to translate the text to english
 using Google Translate API
 """

 if not from_lang in langs:
 warnings.warn('Unknown input language: %s' %
from_lang)
 return ''
 from_lang = langs[from_lang]

 if from_lang == to_lang:

 # Apparently there is no need to call the API

 return data

 # The following is based on py-translate
 # and is blocked for overuse
 # --
 # return translate.translator(from_lang, to_lang, data)
 # --

 # The following is based on Google API
 # and is only on paid services
 # --
 # translate_client =
translate.Client(frailsafe_google_api_key)
 # translation = translate_client.translate(data,
source_language = from_lang, target_language = to_lang)
 # print('Text: {}'.format(text))
 # print('Translation:
{}'.format(translation['translatedText'].encode('utf-8')))
 # --

 # The following is based at MyMemory service
 # --

 lines = data.split('\n')
 trans_result = ''
 for line in lines:
 line = line.strip()
 if line == '':
 continue

 f = {}
 f['q'] = line
 f['langpair'] = '%s|%s' % (from_lang, to_lang)
 f['of'] = 'json'
 f['de'] = mymemory_account_email

 (resp, json_content) = httplib2.Http().request('%s?%s'
 % (mymemory_base_url, urllib.urlencode(f)))
 try:
 result = json.loads(json_content)
 except:
 print 'Error decoding json from mymemory, aborting..
Debug: %s' \
 % debug
 return ''

 if result['responseStatus'] != 200:
 print 'Error from mymory, aborting.. Debug: %s' %
debug
 return ''

 trans_result += result['responseData']['translatedText'] +
'\n'

 # --

 return trans_result.encode('utf-8')

def
update_corpus_with_sentiment_scores(force_rebuild=Fal

- 57 -

FRAILSAFE – H2020-PHC–690140 D4.11

se):
 """Get all text data from all patients
 and updates the corpus with missing entiment analysos

 The force_rebuild parameter, will force to update all
translations
 """

 pids = fetch_patient_visits()

 for cpid in pids:
 for visit in pids[cpid]:
 cpdata = fetch_patient_data(cpid, visit)

 updated = False
 for mt in multi_line_tags_ENG:
 d = cpdata.get(mt, '')

 # Adeio keimeno

 if d == '' and not force_rebuild:
 continue

 # Exw idi ipologisei POS data

 if cpdata.get(mt + '_SENTIMENT_SCORE', '') != ''
\
 and not force_rebuild:
 continue

 # Den to exoume, as to paroume

 ret = get_feature_sentiment_score(d)
 if ret == '' and not force_rebuild:
 continue

 updated = True
 cpdata[mt + '_SENTIMENT_SCORE'] = ret

 # Something changed, time to store it

 if updated:
 print 'Updating patient %s, visit %d' % (cpid, visit),
 save_patient_data(cpid, cpdata, visit)
 print '..Done'

def
update_corpus_with_misspelling_scores(force_rebuild=F
alse):
 """Get all text data from all patients
 and updates the corpus with missing entiment analysos

 The force_rebuild parameter, will force to update all
translations
 """

 pids = fetch_patient_visits()

 for cpid in pids:
 for visit in pids[cpid]:

 cpdata = fetch_patient_data(cpid, visit)
 updated = False
 clang = cpdata['-language']

 for mt in multi_line_tags:
 d = cpdata.get(mt, '')

 # Adeio keimeno

 if d == '' and not force_rebuild:
 continue

 # Exw idi ipologisei POS data

 if cpdata.get(mt + '_MISSPELLING_SCORE', '') !=
'' \
 and not force_rebuild:
 continue

 # Den to exoume, as to paroume

 ret = get_feature_mispelling_score(d, lang=clang)
 if ret == '' and not force_rebuild:
 continue

 updated = True
 cpdata[mt + '_MISSPELLING_SCORE'] = ret

 # Something changed, time to store it

 if updated:
 print 'Updating patient %s, visit %d' % (cpid, visit),
 save_patient_data(cpid, cpdata, visit)
 print '..Done'

def
update_corpus_with_translations(force_rebuild=False):
 """Get all text data from all patients
 and updates the corpus with missing translations
 In order to avoid overuse of the third-part service,
 we save locally the translation for future use.

 The force_rebuild parameter, will force to update all
translations
 """

 pids = fetch_patient_visits()

 for cpid in pids:
 cpdata = fetch_patient_data(cpid)
 def_lang = cpdata.get('-language', '')

 for visit in pids[cpid]:
 cpdata = fetch_patient_data(cpid, visit)
 updated = False
 for mt in multi_line_tags:
 d = cpdata.get(mt, '')

 # Adeio keimeno

- 58 -

FRAILSAFE – H2020-PHC–690140 D4.11

 if d == '' and not force_rebuild:
 continue

 # Exw idi ipologisei POS data

 if cpdata.get(mt + '_ENG', '') != '' \
 and not force_rebuild:
 continue

 if not '-language' in cpdata:
 cpdata['-language'] = def_lang

 if cpdata.get('-language', '') == '':
 print 'Missing lanfuage in patient %s, visit %d' \
 % (cpid, visit)
 continue

 # Den to exoume, as to paroume

 ret = get_translated_data(d, cpdata['-language'],
 debug=cpid)
 if ret == '' and not force_rebuild:
 continue

 updated = True
 cpdata[mt + '_ENG'] = ret

 # Something changed, time to store it

 if updated:
 print 'Updating patient %s, visit %d' % (cpid, visit),
 save_patient_data(cpid, cpdata, visit)
 print '..Done'

def update_pos_info_everywhere(force_rebuild=False):
 """Get all text data from all patients
 and updates the corpus with Part-Of-Speech information

 All results are saved within the database
 """

 pids = fetch_patient_visits()

 for cpid in pids:
 for visit in pids[cpid]:
 cpdata = fetch_patient_data(cpid, visit)
 updated = False
 for mt in multi_line_tags:
 d = cpdata.get(mt, '')

 # Text is empty

 if d == '' and not force_rebuild:
 continue

 # I already have this POS data

 if cpdata.get(mt + '_POS', '') != '' \
 and not force_rebuild:
 continue

 # POS data is missing, let's calculate it

 ret = get_pos_info(d)
 if ret == '' and not force_rebuild:
 continue

 updated = True
 cpdata[mt + '_POS'] = ret

 # Something changed, time to store it

 if updated:
 print 'Updating patient %s, visit %d' % (cpid, visit),
 save_patient_data(cpid, cpdata, visit)
 print '..Done'

def pos_explode_data(data):
 """Explodes all POS data from a string
 .. as given by the POS tagger
 .. and returns a more programmaing-friendly object.

 In case POS tagger changes, this function must
re-implemented
 """

 result = []
 lines = data.split('\n')
 for l in lines:
 if l.strip() == '' or l.find(' ') < 0:
 continue

 (word, tags) = l.split(' ')
 ps = tags.split('/')
 result.append((word, ps))

 return result

def getECRFTags():
 responses = []
 responses.append('habitation zone')
 responses.append('how many people do you follow on
twitter?')
 responses.append('family status')
 responses.append('how many friends/contacts do you
have on facebook?'
)
 responses.append('do you consider yourself a familiar
user of social media?'
)
 responses.append('which of below social media you use?
[facebook]')
 responses.append('how often do you connect to the
internet per week?'
)
 responses.append('have you changed your security
settings in social media in order to protect your personal
data?'
)

- 59 -

FRAILSAFE – H2020-PHC–690140 D4.11

 responses.append('how many follower you have on
twitter?')

 return responses

def updateFromECRF(showMissing=False):
 p = ecrf.get_latest_data_export()

 # Only local patients

 pids = fetch_patient_visits(True)

 # Update frailty tag

 for cpid in pids:
 if not cpid in p:
 if showMissing:
 print 'ID %s is missing from eCRF' % cpid
 continue

 for visit in pids[cpid]:
 cpdata = fetch_patient_data(cpid, visit)
 existing_frailty_status = cpdata.get('-tag', '')

 visit = str(visit)
 if not visit in p[cpid]['responses']:
 continue

 # So nice to have such short titles

 frailty_system = p[cpid]['responses'
][visit].get("{if(sum(q851161, q977341,
q833301, q696310, q689142)=='5',\\non frail\\,(if(sum(
q851161, q977341, q833301, q696310,
q689142)>'7',\\frail\\,(if(sum(q851161, q977341,q833301,
q696310, q689142)>'5'and sum(q851161,
q977341,q833301, q696310, q689142)"
 , '').strip()
 frailty_doctor = p[cpid]['responses'
][visit].get("fried’s categorization according to
clinician’s estimation"
 , '').strip()

 if frailty_doctor == frailty_system and frailty_doctor \
 == '':
 continue

 # Doctor beats system?

 if frailty_doctor != '':
 frailty_system = frailty_doctor

 if frailty_system in ('nonfrail', 'Non frail', 'Non-fragile'
 , 'Non frail'):
 frailty_system = 'nonfrail'
 elif frailty_system in ('prefrail', 'Pré-fragile',
 'Pre-frail', 'Pre-frail'):
 frailty_system = 'prefrail'
 elif frailty_system in ('frail', 'Fragile', 'Frail'):
 frailty_system = 'frail'

 else:
 print "Unable to identify frailty status '%s' for
patient id %s" \
 % (frailty_system, cpid)
 continue

 if existing_frailty_status == frailty_system:
 continue

 cpdata['-tag'] = frailty_system
 save_patient_data(cpid, cpdata, visit)
 print 'Frailty status: Patient ID %s, visit %s has been
auto updated from %s to %s' \
 % (cpid, visit, existing_frailty_status,
frailty_system)

 # Update gender tag

 for cpid in pids:
 if not cpid in p:
 continue

 for visit in pids[cpid]:
 cpdata = fetch_patient_data(cpid, visit)

 existing_gender = cpdata.get('-sex', '')
 gender_system = p[cpid].get('gender',
'').strip().lower()
 if gender_system != '':
 if gender_system in ('m', 'male'):
 gender_system = 'male'
 elif gender_system in ('f', 'female'):
 gender_system = 'female'
 else:
 print "Unable to identify gender status '%s' for
patient id %s" \
 % (gender_system, cpid)
 continue

 if existing_gender != gender_system:
 cpdata['-sex'] = gender_system
 save_patient_data(cpid, cpdata, visit)
 print 'Gender: Patient ID %s has been auto
updated from %s to %s' \
 % (cpid, existing_gender, gender_system)

 existing_year_birth = cpdata.get('-year_birth', '')
 year_birth_system = p[cpid].get('year_birth', ''
).strip().lower()
 if year_birth_system != '':
 if existing_year_birth != year_birth_system:
 cpdata['-year_birth'] = year_birth_system
 save_patient_data(cpid, cpdata, visit)
 print 'Year of birth: Patient ID %s has been auto
updated from %s to %s' \
 % (cpid, existing_year_birth,
year_birth_system)

 existing_profession = cpdata.get('-profession', '')
 profession_system = p[cpid].get('profession', ''
).strip().lower()

- 60 -

FRAILSAFE – H2020-PHC–690140 D4.11

 if profession_system != '':
 if existing_profession != profession_system:
 cpdata['-profession'] = profession_system
 save_patient_data(cpid, cpdata, visit)
 print 'Profession: Patient ID %s has been auto
updated from %s to %s' \
 % (cpid, existing_profession,
profession_system)

 existing_group = cpdata.get('-group', '')
 group_system = p[cpid].get('gorup', '').strip().lower()
 if group_system != '':
 if existing_group != group_system:
 cpdata['-group'] = group_system
 save_patient_data(cpid, cpdata, visit)
 print 'Profession: Patient ID %s has been auto
updated from %s to %s' \
 % (cpid, existing_group, group_system)

 responses = getECRFTags()

 for r in responses:
 internal_value = correct_title_for_arff(r)
 print 'Checking %s (%s)' % (r, internal_value)
 for cpid in pids:
 if not cpid in p:
 continue

 for visit in pids[cpid]:
 cpdata = fetch_patient_data(cpid, visit)

 visit = str(visit)
 if not visit in p[cpid]['responses']:
 continue

 existing_response = cpdata.get('-%s' %
internal_value,
 '')

 system_response = p[cpid]['responses'][visit].get(r,
''
).strip().lower()
 if system_response == '' or system_response in
('na',
 'n/a'):
 system_response = 'na'

 if existing_response != system_response:
 cpdata['-%s' % internal_value] =
system_response
 save_patient_data(cpid, cpdata, visit)
 print '\tPatient ID %s, visit %d, has been auto
updated from %s to %s' \
 % (cpid, int(visit), existing_response,
 system_response)

def correct_title_for_arff(t):
 t = t.lower()
 return re.sub(r'[^a-z0-9]+', '_', t).rstrip('_').lstrip('_')

def print_all_possible_pos_tags():
 """Prints all POS data within our corpus
 for statistical reasons"""

 pids = fetch_patient_visits()

 per_place = {}
 for cpid in pids:
 for visit in pids[cpid]:
 cpdata = fetch_patient_data(cpid, visit)
 for mt in multi_line_tags_POS:
 d = cpdata.get(mt, '')

 # Adeio keimeno

 if d == '':
 continue

 pos_data = pos_explode_data(d)
 for (word, ps) in pos_data:
 for pos in range(len(ps)):
 info = ps[pos]
 if not pos in per_place:
 per_place[pos] = {}

 per_place[pos][info] = per_place[pos].get(info,
 0) + 1

 i = 0
 while i in per_place:
 print 'Position %d' % i
 keys = per_place[i].keys()
 keys.sort()
 for k in keys:
 print ' ' * 3 + '%s: %d' % (k, per_place[i][k])

 i += 1

def exportBasicCSV(only_local=True, dec=','):
 pids = fetch_patient_visits(only_local)

 tags_to_export = []
 for k in verify_tags:
 tags_to_export.append(k)

tags_to_export.append('-how_often_do_you_connect_to_the
_internet_per_week'
)

tags_to_export.append('-how_many_people_do_you_follow_
on_twitter')

tags_to_export.append('-how_many_follower_you_have_on
_twitter')

tags_to_export.append('-how_many_friends_contacts_do_y
ou_have_on_facebook'
)

- 61 -

FRAILSAFE – H2020-PHC–690140 D4.11

 filename = 'csv_export.csv'
 print 'Exporting to %s..' % filename,
 f = open(filename, 'w')

 f.write(dec.join(tags_to_export) + '\n')

 for cpid in pids:
 for visit in pids:
 cpdata = fetch_patient_data(cpid, visit)
 row = []
 for k in tags_to_export:
 if cpdata.get(k, 'na') == 'na':
 row.append('')
 else:
 row.append(cpdata[k])

 f.write(dec.join(row) + '\n')

 f.close()
 print '..Done!'

def install_spell_greek_checker_files():
 """This must be run a root
 """

 # Linux
 # sudo apt-get install myspell-gr-el

 pass

def compute_ig(texts_per_tag, historgram_name=None):
 """
 compute_ig():
 Compute information gain for each word
 """

 # With a little bit of help
 # http://streamhacker.com/tag/information-gain/

 from nltk.metrics import BigramAssocMeasures

 word_count_per_class = {}
 all_word_count_per_class = {}
 word_count_per_word = {}
 all_words = 0

 print 'Loading files for ig..',
 for tclass in texts_per_tag:
 word_count_per_class[tclass] = {}
 all_word_count_per_class[tclass] = 0
 i = len(texts_per_tag[tclass]) / 10
 for text in texts_per_tag[tclass]:
 i -= 1
 if i <= 0:
 print '.',
 i = len(texts_per_tag[tclass]) / 10

 data = text.split(' ')

 for w in data:
 if w == '':
 continue

 word_count_per_class[tclass][w] = \
 word_count_per_class[tclass].get(w, 0) + 1
 all_word_count_per_class[tclass] += 1
 word_count_per_word[w] =
word_count_per_word.get(w, 0) \
 + 1
 all_words += 1

 del data

 print 'Evaluating..',
 i = int(len(word_count_per_word) / 10)
 score_per_word = {}
 for w in word_count_per_word:
 i -= 1
 if i <= 0:
 print ',',
 i = int(len(word_count_per_word) / 10)

 freq = word_count_per_word[w]
 score_per_word[w] = 0

 for c in word_count_per_class:
 score_per_word[w] += \

BigramAssocMeasures.chi_sq(word_count_per_class[c].get(
w,
 0), (freq, all_word_count_per_class[c]),
all_words)

 del word_count_per_class
 del all_word_count_per_class
 del word_count_per_word

 print 'Sorting..',
 s = sortedDictValues(score_per_word)
 print '..Done'

 # del score_per_word

 print '..Done'

 nums = []
 for w in s:
 nums.append(score_per_word[w])

 print 'Creating ig histogram',
 plt.figure(figsize=(24, int(24.0 * 9.0 / 16.0)))

 # plt.hist(numpy.asarray(score_per_word.values()), 5000,
facecolor = 'g')

 plt.plot(nums)
 plt.xlabel('Lexicon values')
 plt.ylabel('IG Score')
 plt.title('IG Score per lexicon lemma')

- 62 -

FRAILSAFE – H2020-PHC–690140 D4.11

 plt.grid(True)
 if not historgram_name is None:
 plt.savefig(historgram_name)
 else:
 plt.show()
 print '..Done'

 # del s

 return (s, score_per_word)

def updateTextToNoSQL(pid, key, data):
 data_out = {}
 for k in data:
 data_out[k.replace('-', '_').replace('__', '_')] = data[k]

 headers = {'Content-Type': 'application/json'}
 body = json.dumps(data_out)
 print 'Sending patient data %s/%s to nosql..' % (str(pid),
 str(key)),
 uri = nosql_api + '/social/update_text/%s/%s' % (str(pid),
str(key))
 try:
 (resp, json_content) =
httplib2.Http(timeout=5).request(uri,
 'POST', body=body, headers=headers)
 print '..Done'
 except:
 print 'Unable to send data for patient %s and text with
key %s' \
 % (str(pid), str(key))
 print 'Data is'
 print data_out

12.2 Prediction tool

1. package predictor;
2.
3. import weka.classifiers.Classifier;
4. import weka.core.Instances;
5. import weka.core.converters.ConverterUtils.DataSource;
6.
7. public class PredictorCLI {
8.
9. public static void main(String[] args) {
10.
11. Classifier cls;
12. try {
13. //load model
14. cls = (Classifier) weka.core.SerializationHelper.read("frailsafe.model");
15.
16.
17. DataSource source;
18. try {
19. //load test data
20. source = new DataSource("in.arff");
21. Instances data = source.getDataSet();
22. if (data.classIndex() == -1)
23. data.setClassIndex(1); //class attribute is the second attribute
24.
25. //predict & print
26. for(int i=0; i<data.numInstances();i++){
27. double value=cls.classifyInstance(data.instance(i));
28. String prediction=data.classAttribute().value((int)value);
29. System.out.println("Prediction for instance: "+i+" is: "+prediction);
30. }

- 63 -

FRAILSAFE – H2020-PHC–690140 D4.11

31.
32. } catch (Exception e) {
33. // TODO Auto-generated catch block
34. e.printStackTrace();
35. }
36. } catch (Exception e) {
37. // TODO Auto-generated catch block
38. e.printStackTrace();
39. }
40. }
41.
42. }

- 64 -

