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EXECUTIVE	SUMMARY	

	

The	FrailSafe	project	aims	to	study	all	domains	of	frailty	and	to	create	new	measures	
of	assessments	 leading	to	a	model	which	will	be	able	to	better	understand,	detect,	
predict,	delay	or	even	revert	frailty.	To	achieve	these	aims	plans	are	made	to	devise	
a	comprehensive	clinical	assessment,	to	develop	a	real-life	sensing	and	intervention	
platform,	 and	 to	 provide	 a	 digital	 patient	 model	 of	 frailty,	 sensitive	 to	 dynamic	
parameters.	Recommendations	will	be	provided	to	delay	frailty,	and	all	this	through	
a	safe,	unobtrusive,	acceptable	system	and	cost	effective	system.		

The	 aim	 of	 workpackage	 WP4	 is	 to	 develop	 methods	 for	 the	 offline	 and	 online	
management,	fusion	and	analysis	of	multimodal	and	advanced	technology	data	from	
social,	behavioral,	cognitive	and	physical	activities	of	 frailty	older	people	and	apply	
them	to	manage	and	analyze	new	data.	Results	from	the	analysis	of	existing	and	new	
data	will	be	also	used	to	create	user-profiling	virtual	models	of	elderly	participants.	

The	main	focus	of	the	deliverable	D4.4	is	to	report	on	the	usage	of	existing	and	new	
techniques	 for	 real-time	 online	 data	 pre-processing	 and	 data	 reduction.	 The	
techniques	must	be	suitable	for	FrailSafe's	streaming	sensor	data,	where	efficiency,	
scalability	 and	 effectiveness	 issues	 are	 of	 main	 importance.	 Furthermore,	 results	
from	 the	 offline	 multimodal	 data	 fusion	 are	 examined	 here	 to	 make	 online	 data	
preprocessing	possible	in	real	time.	This	will	be	available	by	adopting	dimensionality	
reduction	 methods	 to	 the	 streaming	 nature	 of	 the	 data.	 	 Online	 data	 fusion	 is	
focused	on	maintaining	the	desired	accuracy,	minimizing	the	overall	processing	time.		

	

	

	



DOCUMENT	INFORMATION	

	

Contract Number: H2020-PHC–690140 Acronym: FRAILSAFE 

Full title Sensing and predictive treatment of frailty and associated co-morbidities 
using advanced personalized models and advanced interventions 

Project URL http://frailsafe-project.eu/	

EU Project officer Mr. Jan Komarek 

	

Deliverable number:  4.4 Title: Online analysis of data (vers. b) 

Work package number:  4 Title: Data Management and Analytics 

	
Date of delivery Contractual 31/12/2017 (M24) Actual 31/12/2017 

Status Draft o Final x 

Nature Report x Demonstrator x Other o 

Dissemination 
Level 

Publicx Consortium o 

Abstract (for 
dissemination) 

The main focus of the deliverable D4.4 is to report on the usage of existing 
and new techniques for real-time online data pre-processing and data 
reduction. 

Keywords Streaming data, Online data management, Real-time data analysis, 
Streaming data processing, Fall detection, Loss of stability, Loss of 
orientation 

	
Contributing 

authors 
(beneficiaries) 

Konstantinos Deltouzos, Spyros Kalogiannis, Emilia Papagiannaki, 
Evangelia Pippa, Evangelia Zacharaki, Vasilis Megalooikonomou (UoP), 
Victor Kyriazakos, Konstantinos Moustakas (CERTH) 

Responsible 
author(s) 

Konstantinos Deltouzos Email deltouzos@upatras.gr 

Beneficiary UoP Phone +30 2610 996 994 



H2020-PHC–690140	–	FRAILSAFE	 D4.4 Online analysis of data (vers. b)	

 

December 2017 -5- 

	

Table	of	contents	
Table	of	contents	........................................................................................................	5	

List	of	figures	..............................................................................................................	6	

List	of	Tables	...............................................................................................................	6	

1	 Introduction	........................................................................................................	7	

2	 Streaming	Data	Management	and	Processing	......................................................	9	

2.1	 System	architecture	..................................................................................	9	

2.2	 Streaming	data	description	.....................................................................	11	

2.3	 Spark	Streaming	......................................................................................	12	

2.4	 Frailsafe	Spark	Streaming	Application	.....................................................	14	

3	 Real-time	Data	Analysis	.....................................................................................	15	

3.1	 Fall	dectection	.........................................................................................	15	

3.1.1	 Current	research	state-of-the-art	.........................................................	15	

3.1.2	 Sensor	placement	.................................................................................	17	

3.1.3	 Dataset	..................................................................................................	17	

3.1.4	 Feature	Extraction	................................................................................	18	

3.1.5	 Classification	Results	.............................................................................	18	

3.1.6	 Android	app	..........................................................................................	20	

3.2	 Loss	of	stability	........................................................................................	22	

3.2.1	 Related	Work	–	State	of	the	art	............................................................	22	

3.2.2	 LoS	via	Secondary	Gait	Component	Analysis	........................................	24	

3.2.3	 Preliminary	Evaluation	..........................................................................	26	

3.2.4	 Integration	of	LoS	in	the	Fall	Detector	app	...........................................	27	

3.3	 Loss	of	orientation	...................................................................................	28	

3.3.1	 Related	Work	–	State-of-the-art	...........................................................	28	

3.3.2	 Detection	techniques	............................................................................	29	

3.3.1	 Loss	of	Orientation	service	...................................................................	32	

References	................................................................................................................	33	

	

	



H2020-PHC–690140	–	FRAILSAFE	 D4.4 Online analysis of data (vers. b)	

 

December 2017 -6- 

	

List	of	figures	
FIGURE	1:	STREAMING	DATA	MANAGEMENT	AND	ANALYSIS.	..............................................................	10	

FIGURE	3:	SPARK	STREAMING	INPUT	AND	OUTPUT	STREAMS.	.............................................................	13	

FIGURE	4:	SPARK	STREAMING	DATA	DIVISION	TO	RDD	BATCHES.	.........................................................	13	

FIGURE	5:	BAR	GRAPH	SHOWING	THE	ACCURACY	OF	ALL	CLASSIFICATION	MODELS	FOR	ALL	SENSORS.
	......................................................................................................................................................	20	

FIGURE	6.	LOSS	OF	STABILITY	ESTIMATION	PIPELINE.	............................................................................	25	

FIGURE	7.	OUTPUT	SIGNAL	COLOR-LABELED	(X,	Y,	Z)	FOR	INCREASING	STATE	OF	SEVERITY	(TOP	TO	
DOWN).	.........................................................................................................................................	26	

FIGURE	8.	RESULTS	FROM	OUR	TECHNIQUE	SHOW	A	DISTINCTIVE	DIFFERENCE	BETWEEN	DIFFERENT	
LEVELS	OF	INSTABILITY	SEVERITY.	................................................................................................	27	

FIGURE	9.	MAIN	SCREEN	OF	THE	FALL	DETECTOR	APP.	LEFT:	PLOTS	SHOWING	THE	ACCELEROMETER,	
GYROSCOPE	AND	MAGNETOMETER	DATA.	RIGHT:	MAGNETOMETER	CHART	HAS	BEEN	
REPLACED	BY	THE	STABILITY	INDEX	CHART.	.................................................................................	28	

	

	

	

List	of	Tables	
TABLE	1:	GPS	LOGGER	RECORDED	PARAMETERS.	..................................................................................	12	

TABLE	2:	WWBS	RECORDED	PARAMETERS.	...........................................................................................	12	

TABLE	3:	EVALUATION	ALL	CLASSIFICATION	MODELS.	..........................................................................	19	

TABLE	4:	TYPES	OF	ADLS	PERFORMED	...................................................................................................	21	

TABLE	5:	TYPES	OF	FALLS	PERFORMED	..................................................................................................	21	

	 	



H2020-PHC–690140	–	FRAILSAFE	 D4.4 Online analysis of data (vers. b)	

 

December 2017 -7- 

	

1 Introduction	
One	of	 the	FrailSafe	project’s	 aim	 is	 the	 real-time	monitoring	of	 the	older	persons	
towards	detecting	frailty	risks	and	triggering	alarms	in	case	of	emergency	situations	
(e.g.,	fall,	loss	of	orientation,	or	suicidal	manifestations	in	electronic	written	text).	In	
case	of	 such	an	emergency	 situation,	an	alarm	needs	 to	be	 triggered	updating	 the	
VPM	(Virtual	Patient	Model)	accordingly.	

Towards	this	direction,	a	system	that	collects	the	data	streams	and	processes	them	
was	 developed.	 This	 system	 is	 built	 on	 the	 smartphone,	 as	 it	 is	 the	 device	 that	 is	
close	enough	to	the	participant	in	order	to	collect	the	sensor	data	and	analyze	them	
accordingly.	The	sensor	data	which	are	collected	at	the	smartphone	 in	a	streaming	
fashion,	are	the	GPS	coordinates	of	the	participant	and	the	 IMU	signals	of	the	vest	
the	participant	is	wearing.	These	data	are	used	in	order	to	assess	the	balance	of	the	
older	person	and	identify	loss	of	stability,	falls,	and	loss	of	orientation.	Additionally,	
in	 the	 FrailSafe	 cloud	 there	 is	 a	 cluster	 running	 Apache	 Spark	 which	 has	 Spark	
Streaming	 module	 for	 real-time	 data	 processing.	 This	 cluster	 is	 used	 in	 order	 to	
collect	the	data	streams	from	various	sources	and	process	them	towards	generating	
summaries	and	alerts.		

The	data	 analysis	which	has	been	 identified	 as	 necessary	 to	be	performed	 in	 real-
time	for	FrailSafe	project,	is	targeted	in	the	areas	of	Fall	detection,	Instability,	Loss	of	
orientation	and	Suicidal	manifestations	in	text.	The	first	three	areas	lie	in	the	scope	
of	this	Deliverable,	while	the	 last	one	 is	 in	the	scope	of	Deliverable	D4.8	about	the	
online	 mode	 of	 LingTester.	 Currently	 the	 online	 analysis	 algorithms	 are	 being	
developed	 and	 validated	 only	 in	 laboratory	 environment.	 In	 the	 final	 FrailSafe	
product	any	event	 identified	 in	 the	 smartphone	will	 be	 transmitted	 in	 real-time	 to	
the	FrailSafe	cloud.	

The	 most	 challenging	 aspect	 of	 fall	 detection	 is	 the	 distinction	 between	 falls	 and	
sudden	 movements	 that	 occur	 while	 performing	 Activities	 of	 Daily	 Living	 (ADLs).	
Such	movements	are	usually	activites	that	include	high	acceleration	(e.g.,	walking	or	
running)	 or	 transitions	 between	 activities	 (e.g.,	 getting	 up	 from	 chair).	 We	
investigated	 the	 state-of-the-art	 on	 fall	 detection	 and	 evaluated	 whether	 it	 is	
feasible	to	detect	falls	using	a	single	sensor.	Then	we	extended	our	fall	classification	
model	and	built	an	android	application	in	order	to	detect	falls	in	real-time.	The	initial	
developed	 app	 which	 used	 the	 sensors	 (accelerometer,	 gyroscope	 and	
magnetometer)	 of	 the	 smartphone	managed	 to	 detect	 falls	with	 high	 accuracy.	 In	
the	 final	 version,	 the	app	was	modified	 in	order	 for	 the	 smartphone	 to	 collect	 the	
sensor	 data	 directly	 from	 the	WWBS	 and	 perform	 the	 fall	 detection	 algorithm	 on	
them.	

Towards	identifying	loss	of	stability,	we	have	developed	an	algorithm	based	on	PCA	
(Principal	 Component	Analysis)	 decomposition	of	 the	 raw	acceleration	 signals.	 The	
processing	pipeline	starts	by	filtering	the	raw	data	using	a	High-Pass	Filtering.	In	the	
second	step	we	use	the	PCA	to	eliminate	the	Principal	Component	and	instead	use	
the	 Secondary	Gait	 Components.	 Then	we	 reconstruct	 the	decomposed	 secondary	
gait	 signals,	 from	 the	 separated	 Euclidean	 coordinates	 into	 a	 3D	 timeseries	 signal	
that	enables	us	to	study	secondary	dynamics	to	the	participant’s	gait.		
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Finally,	we	have	analyzed	the	state-of-the-art	on	loss	of	spatial	navigation	and	Loss	
of	 Orientation	 (LoO)	 which	 has	 gained	 much	 attention	 from	 both	 the	 research	
community	and	the	industry	lately.	The	majority	of	the	systems	proposed	are	based	
on	 tracking	 information,	 geo-fencing,	 i.e.,	 predefined	 boundaries	 of	 where	 the	
participant	 is	 supposed	 to	 be,	 and	 alerting	 systems	 aimed	 to	 inform	 the	 caregiver	
that	a	participant	is	probably	wandering.	Towards	this	direction	we	have	developed	
our	Loss	of	Orientation	application	based	on	the	current	detection	techniques.	
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2 Streaming	Data	Management	and	Processing	

2.1 System	architecture	
One	of	 the	FrailSafe	project’s	 aim	 is	 the	 real-time	monitoring	of	 the	older	persons	
towards	detecting	frailty	risks	and	triggering	alarms	in	case	of	emergency	situations	
(e.g.,	fall,	loss	of	orientation,	or	suicidal	manifestations	in	electronic	written	text).	In	
order	 to	be	 ready	 to	provide	 real-time	monitoring,	 a	 system	 that	 collects	 the	data	
streams	and	processes	them	needs	to	be	developed.	

Data	 stream	 processing	 differs	 significantly	 from	 offline	 data	 processing	 (batch	
processing).	 Batch	 processing	 is	 used	 to	 compute	 arbitrary	 queries	 over	 different	
sets	 of	 data.	 It	 usually	 computes	 results	 that	 are	 derived	 from	 all	 the	 data	 it	
encompasses,	 and	 enables	 deep	 analysis	 of	 big	 data	 sets.	 In	 contrast,	 stream	
processing	 requires	 ingesting	 a	 sequence	 of	 data,	 and	 incrementally	 updating	
metrics,	reports,	and	summary	statistics	in	response	to	each	arriving	data	record.	It	is	
better	 suited	 for	 real-time	monitoring	 and	 response	 functions.	We	 can	 summarize	
the	differences	in	the	following	table:	

	

	 Batch	processing	 Stream	processing	

Data	scope	 Queries	 or	 processing	 over	 all	
or	 most	 of	 the	 data	 in	 the	
dataset.	

Queries	 or	 processing	 over	 data	
within	a	rolling	time	window,	or	on	
just	the	most	recent	data	record.	

Data	size	 Large	batches	of	data.	 Individual	records	or	micro	batches	
consisting	of	a	few	records.	

Performance	 Latencies	in	minutes	to	hours.	 Requires	 latency	 in	 the	 order	 of	
seconds	or	milliseconds.	

Analyses	 Complex	analytics.	 Simple	 response	 functions,	
aggregates,	and	rolling	metrics.	

	

The	data	processing	which	has	been	identified	as	necessary	to	be	performed	in	real-
time	for	FrailSafe	project,	is	targeted	in	the	following	areas:	

- Fall	detection	
- Instability	
- Loss	of	orientation	
- Suicidal	manifestations	in	text	

The	first	three	areas	lie	 in	the	scope	of	this	Deliverable,	while	the	last	one	is	 in	the	
scope	of	Deliverable	D4.8	about	the	online	mode	of	LingTester.	
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Figure 1: Streaming data management and analysis. 

	

In	 Figure	 1,	 we	 present	 the	 currect	 state	 of	 streaming	 data	 analysis	 in	 FrailSafe	
project.	The	data	coming	at	streaming	mode	originate	from	two	sources:	GPS	signals	
from	 the	 satellites	 and	 physiological	 signals	 from	 the	 wearable	 sensorized	 vest	
(WWBS).	The	device	which	 is	 in	 charge	 to	 collect	 this	data	 is	 the	 smartphone,	and	
uses	two	different	software	modules	developed	by	CERTH	as	part	of	Task	T3.3:	
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• The	GPS	logger	sends	a	request	to	the	satellites	to	identify	its	location,	and	
stores	the	reply	with	the	specific	details.	

• The	WWBS-to-Android	API	reads	the	signals	generated	by	the	WWBS	sensors	
and	transmitted	by	Bluetooth.	

Then	there	are	three	components	which	use	the	acquired	sensor	signal	streams	and	
perform	data	processing.	The	Loss	of	stability	and	the	Fall	detection	components	use	
the	WWBS	signals	to	evaluate	the	instability	of	the	older	person	and	detect	falls	that	
might	 occurred	 during	 the	 monitoring	 period.	 These	 components	 run	 on	 the	
smartphone	 for	 various	 reasons.	 One	 of	 the	 most	 import	 is	 that	 by	 running	 the	
analysis	close	to	the	collection	of	data,	we	minimize	the	delay	that	is	caused	by	data	
transmission.	This	way	we	can	guarantee	the	timely	detection	of	risky	events	(such	
as	 falls).	We	aimed	to	run	the	fall	detection/loss	of	stability	analysis	even	closer	to	
the	device	which	generates	the	data,	 i.e.,	the	WWBS,	but	unfortunately	the	WWBS	
didn’t	have	the	necessary	hardware	requirements	to	do	so.	Additionally,	running	the	
analysis	 on	 the	 smartphone	 instead	 of	 transmitting	 data	 to	 the	 cloud	 gives	 us	 the	
advantage	of	being	able	to	analyze	the	data	and	detect	risks	even	when	there	is	no	
internet	connectivity	available.	Finally,	the	Loss	of	orientation	component	evaluates	
the	 sense	 of	 orientation	 of	 the	 older	 persons	 by	 processing	 the	 GPS	 signals.	 In	
comparison	with	falls	and	instability	which	are	observed	instantaneously,	the	loss	of	
orientation	 that	 the	older	person	might	experience	needs	a	 larger	 time	window	 in	
order	to	be	detected.	This	is	the	reason	that	this	component	has	been	decided	to	run	
in	the	FrailSafe	cloud.	Finally,	any	event	identified	by	the	three	components	(such	as	
a	detected	fall)	is	forwarded	to	the	DSS.	

Currently	 the	online	analysis	 algorithms	are	being	developed	and	validated	only	 in	
laboratory	 environment	 and	 thus	 are	 not	 used	 to	 monitor	 participants	 of	 the	
FrailSafe	 study.	 In	 the	 final	 FrailSafe	 product	 these	 algorithms	 will	 be	 used	 to	
monitor	the	older	people	and	any	event	identified,	will	be	transmitted	in	real-time	to	
the	DSS.		

	

2.2 Streaming	data	description	
	

GPS	data	

The	 GPS	 logger	 application	 for	 the	 smartphone	 collects	 measurements	 about	 the	
geographic	location	of	the	participants.	The	location	is	obtained	by	receiving	a	signal	
from	 GPS	 satellites,	 thus	 it	 is	 accurate	 only	 for	 the	 outdoor	 localization	 of	 the	
participant	 (in	 a	 macroscopic	 scale).	 The	 specific	 measurements	 obtained	 are	 the	
latitude,	 longitude,	 and	 elevation	 of	 each	 geographic	 location,	 together	 with	 the	
accuracy	 of	 the	 measurement	 and	 the	 orientation	 of	 the	 movement.	 Combining	
subsequent	 points	 of	 the	 location	 of	 the	 participant,	 we	 can	 derive	 other	
measurements	with	more	clinical	value	such	as	the	speed	of	movement,	the	distance	
covered	etc.	The	GPS	logger	application	additionally	measures	the	number	of	steps	
the	participant	has	made,	using	the	phone	sensors.	
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These	measurements	can	be	summarized	in	the	following	table:	

	
Table 1: GPS logger recorded parameters. 

	

	

Sensorized	strap/vest	

The	 sensorized	 strap/vest	 which	 is	 manufactured	 by	 our	 partner	 Smartex,	 is	
equipped	with	a	series	of	sensors	which	provide	useful	measurements	for	FrailSafe	
participants.	 However	 not	 all	 of	 them	 are	 transmitted	 to	 the	 smartphone	 for	
analysis,	 because	 of	 real-time	 limitations.	 The	 data	 which	 are	 transmitted	 by	 the	
WWBS	 and	 captured	 by	 the	 API	 are	 the	 IMU	 measurements.	 These	 refer	 to	 the	
participant’s	 specific	 force,	 angular	 rate,	 and	 the	 magnetic	 field	 surrounding	 the	
body	 in	 X-Y-Z	 axis	 measured	 using	 accelerometer,	 gyroscope	 and	 magnetometer,	
respectively.	 These	 measurements	 are	 needed	 in	 order	 to	 run	 Fall	 Detection	 and	
Loss	of	orientation	algorithms.	

	
Table 2: WWBS recorded parameters. 

Recorded	
parameter	 Description	 Values	(1	unit)	

Sampling	
rate	

AccX-Y-Z	Value	 Accelerometer	in	X-Y-Z	axes	 0.97	10-3	g	 25Hz	
GyroX-Y-Z	Value	 Gyroscope	in	X-Y-Z	axes	 0.122	°/s	 25Hz	
MagX-Y-Z	Value	 Magnetometer	in	X-Y-Z	axes	 0.6	µT	 25Hz	
	

	

2.3 Spark	Streaming	
A	 data	 stream	 could	 be	 defined	 as	 an	 unbounded	 sequence	 of	 data	 arriving	
continuously.	 Streaming	divides	 continuously	 flowing	 input	data	 into	discrete	units	
for	 processing.	 Stream	 processing	 is	 low	 latency	 processing	 and	 analyzing	 of	

Recorded	
parameter	 Description	 Sampling	rate	

Latitude	
Satelite	estimation	of	the	latitude	of	the	
geolocation	point	 variable	

Longitude	
Satelite	estimation	of	the	longitude	of	the	
geolocation	point	 variable	

Elevation	 Elevation	of	the	geolocation	point	(sea	level)	 variable	
Speed	 Indicative	speed	of	movement	 variable	
Accuracy	 Accuracy	of	the	geolocation	 variable	
Bearing	 Orientation	of	the	movement	 variable	
Steps	 Step	counter	(based	on	android	sensor)	 variable	
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streaming	data.	Spark	Streaming	 is	an	extension	of	the	core	Spark	API	that	enables	
scalable,	 high-throughput,	 fault-tolerant	 stream	 processing	 of	 live	 data.	 Spark	
Streaming	 is	 for	use	cases	which	require	a	significant	amount	of	data	to	be	quickly	
processed	as	soon	as	it	arrives.	Example	real-time	use	cases	are:	

• Website	monitoring,	Network	monitoring	
• Fraud	detection	
• Web	clicks	
• Advertising	
• Internet	of	Things:	sensors	

Spark	Streaming	supports	data	sources	such	as	HDFS	directories,	TCP	sockets,	Kafka,	
Flume,	 Twitter,	 etc.	 Data	 Streams	 can	 be	 processed	 with	 Spark’s	 core	 APIS,	
DataFrames	 SQL,	 or	 machine	 learning	 APIs,	 and	 can	 be	 persisted	 to	 a	 filesystem,	
HDFS,	databases,	or	any	data	source	offering	a	Hadoop	OutputFormat.	

	

Internally,	Spark	Streaming	works	as	follows:	It	receives	live	input	data	streams	and	
divides	 the	 data	 into	 batches,	 which	 are	 then	 processed	 by	 the	 Spark	 engine	 to	
generate	the	final	stream	of	results	in	batches,	as	shown	in	the	following	figure.	

	
Figure 3: Spark Streaming data division to RDD batches. 

		

Spark	 Streaming	 provides	 a	 high-level	 abstraction	 called	discretized	
stream	or	DStream,	which	represents	a	continuous	stream	of	data.	DStreams	can	be	
created	 either	 from	 input	 data	 streams	 from	 sources	 such	 as	 Kafka,	 Flume,	 and	
Kinesis,	 or	 by	 applying	 high-level	 operations	 on	 other	 DStreams.	 Internally,	 a	
DStream	 is	 represented	 as	 a	 sequence	 of	Resilient	 Distributed	 Datasets	 (RDDs),	
which	 are	 the	 basic	 abstraction	 in	 Spark	 and	 represent	 an	 immutable,	 partitioned	
collection	of	elements	that	can	be	operated	on	in	parallel.	

Figure 2: Spark Streaming input and output streams.	
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2.4 Frailsafe	Spark	Streaming	Application	
In	 the	 terms	 of	 Frailsafe	 project,	 Spark	 Streaming	 is	 planned	 to	 be	 used	 to	 store	
streaming	data	 in	 the	Frailsafe	Database	 (HBase).	More	 specifically,	 the	 sources	of	
data	that	will	be	streamed	in	HBase,	as	described	above,	are	the	GPS	and	the	WWBS	
shown	in	Figure	1.		

The	 Spark-Streaming	 Application	 that	 has	 been	 designed	 and	 developed	 does	 the	
following:	

1. Reads	streaming	data	stored	in	CSV	format	 in	a	directory	 in	Hadoop	File	
System	(HDFS).	

2. Processes	the	streaming	data.	
3. Generate	 alerts	 when	 abnormal	 data	 values	 (e.g.	 from	 WWBS)	 are	

detected.	
4. Writes	the	processed	data	and	alerts	to	an	HBase	Table.	

More	 specifically,	 the	 aim	 of	 the	 application	 is	 to	 run	 permanently	 in	 FrailSafe	
Amazon	Cloud,	providing	a	continuous	check	for	new	data	of	the	specified	sources.	
When	 new	 data	 is	 inserted	 into	 the	 HDFS	 the	 application	 immediately	 starts	
processing	it	by	transforming	it	into	suitable	form	to	fit	HBase	Schema	that	has	been	
determined.	After	the	completion	of	the	processing,	the	storing	procedure	starts.	
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3 Real-time	Data	Analysis	

3.1 Fall	dectection	
Falls	 are	 a	 common	 cause	 of	 injury	 among	 older	 people.	 According	 to	 the	World	
Health	Organization,	 28–35%	of	 people	 aged	 65	 and	over	 fall	 at	 least	 once	 a	 year	
with	serious	consequences	such	as	heavy	injuries	and	even	death.	Additionally,	the	
moments	 after	 a	 fall	 are	 very	 crucial.	Many	 people	 experience	 what	 is	 called	 the	
“long	lie,”	a	long	period	of	immobility	after	a	fall	that	can	have	serious	complications	
in	a	person’s	health.	Unless	precautions	are	 taken,	 the	number	of	 injuries	and	 the	
costs	associated	with	fall-related	trauma	will	double	in	the	near	future.	Fall	detection	
is	therefore	considered	as	an	extremely	important	aspect	of	healthcare.							

The	 most	 challenging	 aspect	 of	 fall	 detection	 is	 the	 distinction	 between	 falls	 and	
Activities	of	Daily	Living	(ADLs)	such	as	sitting,	standing	or	walking	since	falls	typically	
occur	while	performing	daily	activities.	In	particular,	ADLs	with	high	acceleration	are	
often	confused	with	falls.	Misinterpreting	a	fall	as	an	ADL	can	have	serious	effects	on	
the	subject’s	health.	Therefore,	a	fall	detection	system	should	be	able	to	accurately	
distinguish	 falls	 from	ADLs	 immediately	when	 they	 occur.	 This	 requires	 falls	 to	 be	
automatically	 detected	 in	 real	 time.	 Another	 challenge	 is	 to	 make	 the	 system	 as	
simple	as	possible,	with	low	false-alarm	rates.	Subjects	using	the	system	should	feel	
comfortable	 and	 their	 quality	 of	 everyday	 life	 should	 not	 be	 affected.	 	 Accurate,	
reliable	and	real-time	fall	detection	systems	are	therefore	essential.			

	

3.1.1 Current	research	state-of-the-art	
Significant	 research	 has	 been	 conducted	 in	 this	 field	 and	 various	 fall	 detection	
systems	 have	 been	 proposed	 in	 the	 past	 years.	 (Noury	 et	 al,	 2007)	 and	 (Yu	 et	 al,	
2008)	have	investigated	the	principles	of	fall	detection	and	reviewed	early	works	on	
the	 subject.	 Fall	 detection	 approaches	 can	 be	 divided	 into	 two	 main	 categories:	
vision-based	and	wearable	device	(motion	sensor)-based	systems.	

	Several	context	aware	systems	that	use	devices	such	as	cameras	or	infrared	sensors	
to	 detect	 falls	 within	 an	 environment	 have	 been	 developed.	 (Rougier	 et	 al,	 2007)	
used	human	shape	deformation	to	track	the	person’s	silhouette	in	recordings	taken	
from	four	cameras.	Falls	and	ADLs	were	classified	with	98%	accuracy.	In	(Mastorakis	
and	Makris,	2012),	a	human	3D	bounding	box	was	created	and	 the	Kinect	 infrared	
sensor	 was	 used	 to	 accurately	 detect	 falls	 without	 any	 prior	 knowledge	 of	 the	
environment.	 (Olivieri	 et	 al,	 2012)	used	motion	 templates	 taken	 from	a	 camera	 to	
recognize	 certain	 ADLs	 and	 detect	 falls,	 achieving	 99%	 recognition	 rate.	 However,	
these	 approaches	 have	 certain	 limitations;	 the	 system	 can	 only	 monitor	 activities	
within	 the	 environment	 and	 thus,	 outdoor	 activities	 are	 excluded,	 restricting	 the	
mobility	of	the	user.	Also,	other	people	moving	within	the	same	environment	might	
also	“confuse”	the	system	and	trigger	false	alarms	in	some	cases.	

The	use	of	wearable	motion	sensors	has	been	preferred	by	many	researchers.	With	
the	advances	in	micro	electro-mechanical	systems	(MEMS)	technology,	sensors	such	
as	 accelerometers,	 gyroscopes	 and	 magnetometers	 have	 been	 integrated	 within	



H2020-PHC–690140	–	FRAILSAFE	 D4.4 Online analysis of data (vers. b)	

 

December 2017 -16- 

	

small	motion	sensor	units.	Small	devices	that	contain	the	above	sensors	can	be	used	
to	collect	movement	data	and	detect	falls.	They	are	compact,	light,	inexpensive	and	
have	 low	 power	 consumption.	 They	 can	 be	 placed	 in	 the	 subject’s	 pockets	 or	 be	
easily	 attached	at	different	body	parts	without	making	 the	 subject	uncomfortable;	
thus,	they	make	the	analysis	of	outdoor	activities	possible.	Different	body	parts	have	
been	proposed	for	the	sensor	placement	that	 improve	the	accuracy	with	minimum	
intrusion	 to	 the	 subject’s	 everyday	 life.	 (Yang	 and	 Hsu,	 2010)	 have	 examined	 the	
fundamentals	of	such	sensors	as	well	as	the	optimal	position	on	the	human	body	for	
sensor	placement.		

In	fall	detection	studies,	typically	simple	thresholding	is	used.	A	fall	is	detected	when	
the	acceleration	suddenly	increases	due	to	the	change	in	orientation	from	upright	to	
lying	 position	 (Bourke	 et	 al,	 2007).	 In	 (Bourke	 et	 al,	 2010),	 the	 results	 of	 certain	
threshold-based	methods	that	consider	fall	 impact,	velocity	and	posture	have	been	
assessed	 and	 tested	 on	 elderly	 subjects,	 achieving	 94.6%	 sensitivity.	 Thresholding	
methods	sometimes	tend	to	miss	“soft	falls”	meaning	falls	that	might	not	exceed	the	
threshold.	Also,	certain	ADLs	with	high	acceleration	might	exceed	the	threshold	and	
get	misclassified	as	falls.	

The	main	 classification	problem	 is	 to	distinguish	 falls	 from	ADLs.	Machine	 learning	
techniques	 have	 been	 used	 to	 achieve	 more	 reliable	 results.	 Every	 recorded	
movement	in	the	fall	and	activity	database	(Özdemir	and	Barshan,	2014)	has	its	own	
pattern.	By	extracting	features	from	the	raw	data,	these	patterns	can	be	classified	by	
different	classification	methods.	Before	raw	data	are	given	to	different	classification	
algorithms,	 they	 must	 be	 pre-processed	 using	 a	 windowing	 technique.	 Such	 a	
technique	divides	the	sensor	signal	into	smaller	time	segments	(i.e.,	windows)	and	a	
classification	 algorithm	 is	 applied	 separately	 on	 each	 window,	 producing	 a	
classification	result.	After	pre-processing,	 features	 from	the	 time	or	spatial	domain	
are	 extracted	 to	 feed	 trained	 classifiers	 such	 as	 artificial	 neural	 (ANN)	 or	 Bayesian	
networks	(BN),	support	vector	machines	(SVMs),	decision	trees,	k-nearest	neighbors	
(k-NN),	 etc.	 (Kaldegari	 et	 al.	 2012)	 used	 statistical	 features	 such	 as	 maximum,	
minimum,	 mean,	 range,	 variance	 and	 standard	 deviation	 extracted	 from	 a	 waist-
worn	tri-axial	accelerometer	to	investigate	the	performance	of	various	classifiers	on	
fall	 detection.	 The	 multilayer	 perceptron	 yielded	 the	 best	 sensitivity	 (90.15%).	
(Özdemir	and	Barshan,	2014)	added	autocorrelation	coefficients	and	discrete	Fourier	
transform	 (DFT)	 coefficients	 extracted	 from	 data	 acquired	 by	 sensors	 placed	 at	
different	body	parts.	Six	classifiers	(k-NN,	SVM,	ANN,	least-squares	method,	Bayesian	
decision	making,	dynamic	time	warping)	were	used	to	assign	a	fall	or	ADL	class	label	
to	 the	 feature	vectors	 concatenated	 from	all	 sensors.	All	methods	achieved	higher	
than	 97.47%	 and	 93.44%	 sensitivity	 and	 specificity,	 respectively.	 (Yuwono	 et	 al,	
2012)	obtained	data	from	a	single	waist-worn	tri-axial	accelerometer	and	extracted	
features	using	the	Particle	Swarm	Optimization	(PSO)	clustering	method.	Then,	they	
proceeded	to	classify	the	data	achieving	above	98.6%	sensitivity	in	detecting	falls.	
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3.1.2 Sensor	placement	
Earlier	studies	report	conflicting	results	on	the	best	location	on	the	human	body	to	
carry	 a	 single	 fall	 detection	 device.	 Some	 studies	 report	 that	 the	waist	 is	 the	 best	
place,	since	 it	 is	close	to	the	body’s	center	of	gravity	 (Bourke	et	al,	2010;	Özdemir,	
2016),	 while	 some	 claim	 that	 the	 chest	 or	 the	 head	 is	 better	 [9,	 15-17].	 Several	
studies	 consistently	 agree	 that	 the	arms	and	 the	 legs	are	not	 suitable	parts	of	 the	
body	 to	 carry	 a	 fall	 detection	 device	 since	 they	 are	 associated	 with	 higher	
accelerations	(Kangas	et	al,	2007;	Bianchi	et	al,	2010).	Therefore,	resolving	this	issue	
through	 experiments	 that	 follow	 standardized	 procedures	 will	 be	 a	 valuable	
contribution.	(Özdemir	and	Barshan,	2014)	acquired	data	from	sensors	placed	on	six	
body	parts	 including	head,	chest,	waist,	wrist,	 thigh	and	ankle.	 In	order	to	proceed	
with	classification,	the	features	extracted	from	each	location	are	concatenated	to	a	
single	 feature	 vector	 leading	 to	 a	 high-dimensional	 feature	 space.	 However,	 fall	
detection	often	needs	to	be	performed	in	real-time	which	requires	lighter	processing	
that	can	be	achieved	either	through	dimensionality	reduction	or	selection	of	a	single	
sensor	unit	located	at	the	optimal	position.		

In	 our	work	 (Ntanasis	 et	 al.,	 2016),	 we	 investigated	whether	 placing	 a	 single	 IMU	
sensor	 on	 the	 body	 is	 sufficient	 for	 accurately	 detecting	 falls,	 and	 which	 is	 the	
optimal	 location	for	the	sensor	placement	on	the	human	body.	To	achieve	this,	we	
evaluate	 the	activity	and	 fall	dataset	created	by	 (Özdemir	and	Barshan,	2014)	with	
respect	to	several	classification	algorithms	using	only	the	data	acquired	from	a	single	
sensor	 location	 each	 time.	 The	 classification	 performance	 in	 terms	 of	 accuracy	 is	
used	as	the	criterion	to	reveal	the	optimal	sensor	location.	Since	data	from	a	single	
sensor	 unit	 are	 used,	 there	 is	 no	 need	 for	 dimensionality	 reduction,	 making	 the	
proposed	 methodology	 computationally	 efficient	 and	 thus,	 more	 capable	 of	 real-
time	fall	detection.	

	

3.1.3 Dataset	
With	 Erciyes	 University	 Ethics	 Committee	 approval,	 seven	males	 (24	 ±3	 years	 old,	
67.5	±13.5	kg,	172	±	12	cm)	and	seven	females	(21.5	±	2.5	years	old,	58.5	±	11.5	kg,	
169.5	±	12.5	cm)	healthy	volunteers	participated	in	the	study	with	informed	written	
consent.	 Six	wireless	 sensor	 units	were	 tightly	 fitted	with	 special	 strap	 sets	 to	 the	
subjects’	heads,	chests,	waists,	right-wrists,	right-thighs,	and	right-ankles.		Each	unit	
comprises	 three	 tri-axial	 devices	 (accelerometer,	 gyroscope,	 and	
magnetometer/compass)	with	 respective	 ranges	of	±120	m/s2,	±1200o/s,	and	±1.5	
Gauss,	 and	 an	 atmospheric	 pressure	 meter	 with	 300–1100	 hPa	 operating	 range,	
which	we	did	not	use.	Raw	motion	data	were	recorded	with	a	sampling	frequency	of	
25	Hz.	Acceleration,	rate	of	turn,	and	the	strength	of	the	Earth’s	magnetic	field	along	
three	perpendicular	axes	(x,	y,	z)	were	recorded	for	each	unit	(Yuwono	et	al,	2012).	A	
set	of	trials	consists	of	20	fall	actions	(front-lying,	front-protection-lying,	front-knees,	
front-knees-lying,	 front-right,	 front-left,	 front-quick-recovery,	 front-slow-recovery,	
back-sitting,	 back-lying,	 back-right,	 back-left,	 right-sideway,	 right-recovery,	 left-
sideway,	left-recovery,	syncope,	syncope-wall,	podium,	rolling-out-bed)	and	16	ADLs	
(lying-bed,	 rising-bed,	 sit-bed,	 sit-chair,	 sit-sofa,	 sit-air,	 walking-forward,	 jogging,	
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walking-backward,	 bending,	 bending-pick-up,	 stumble,	 limp,	 squatting-down,	 trip-
over,	 coughing-sneezing).	 These	 are	 adopted	 from	 (Abbate	 et	 al,	 2010)	 and	 lasted	
about	15	s	on	the	average.	The	14	volunteers	repeated	each	test	for	five	times.	Thus,	
a	 considerably	 diverse	 dataset	 comprising	 1400	 falls	 (20	 tasks	 ×	 14	 volunteers	 ×	 5	
trials)	and	1120	ADLs	(16	tasks	×	14	volunteers	×	5	trials)	was	acquired,	resulting	in	
2520	 trials.	 Many	 of	 the	 non-fall	 actions	 included	 in	 the	 dataset	 are	 high-impact	
events	that	may	be	easily	confused	with	falls.	

	

3.1.4 	Feature	Extraction	
Before	 we	 train	 the	 classifiers,	 we	 need	 to	 identify	 and	 isolate	 the	 actual	
experimental	events	since	raw	data	acquired	from	the	sensors	 include	several	time	
points	 that	 correspond	 to	 immobility	 before	 and	 after	 the	 detected	 fall	 event.	 In	
order	to	identify	the	fall	event,	we	detect	the	peak	of	the	total	acceleration	vector	is.	
Total	acceleration	is	defined	as:		

	

AT= Ax2+Ay2+AZ2  

 

(1) 

where	Ax,	Ay	and	Az	are	the	accelerations	along	the	x,	y	and	z	axis	respectively.		

In	 contrast	 to	 (Özdemir	 and	Barshan,	2014),	we	measure	 the	 total	 acceleration	on	
each	 sensor	 separately.	 For	 each	 sensor,	 we	 keep	 two	 seconds	 of	 the	 sequence	
before	and	after	the	peak	acceleration,	that	 is	50	values	before	and	after	the	peak	
given	the	sampling	frequency	of	25	Hz.	Therefore,	for	each	test,	we	obtain	six	arrays	
of	size	9x101,	one	for	each	of	the	six	sensors.	

We	parameterize	each	one	of	the	nine	measured	events	using	the	features	proposed	
in	 (Özdemir	and	Barshan,	2014):	minimum,	maximum	and	mean	values,	 skewness,	
kurtosis,	 the	 first	 11	 values	 of	 the	 autocorrelation	 sequence	 and	 the	 first	 five	
frequencies	with	maximum	magnitude	of	the	DFT	along	with	the	five	corresponding	
amplitudes,	resulting	in	a	feature	vector	of	dimensionality	234	(26	features	for	each	
one	of	the	nine	measured	signals)	for	each	test.	

3.1.5 Classification	Results	
We	evaluate	the	ability	of	the	above	features	to	discriminate	between	falls	and	ADLs	
using	several	classification	algorithms	 implemented	by	 the	WEKA	machine	 learning	
toolkit	 [20]	 including	 J48	 decision	 tree,	 k-nearest	 neighbors	 algorithm	 (IBk)	 [21],	
Random	Forest	(RF)	[22,23],	Random	Committee	(RC)	and	SVM	[24]	with	RBF	Kernel	
(SMO).	 The	 classifiers	 in	 our	 study	 were	 selected	 in	 an	 attempt	 to	 evaluate	
representative	algorithms	 for	each	one	of	 the	main	categories	of	machine	 learning	
classifiers	 including	decision	 trees	 (J48),	 support	vector	machines	 (SMO),	ensemble	
classifiers	(RF,	RC)	but	also	simple	methods	such	as	k-NN	(IBk).	
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We	 evaluated	 binary	 classification	 performance	 using	 accuracy,	 sensitivity	 and	
specificity.	Evaluation	was	performed	in	a	10-fold	cross	validation	setting.	

	
Table 3: Evaluation all classification models. 

Classification	
Model	

Sensors	 Accuracy	 Sensitivity	 Specificity	

(a)	J48	

Head	 96.48	 91.06	 95.76	

Chest	 97.53	 97.70	 97.31	

Waist	 97.96	 97.99	 97.94	

Wrist	 93.71	 94.78	 92.37	

Thigh	 98.24	 98.71	 97.67	

Ankle	 97.45	 97.49	 97.40	

(b)	IBk	

Head	 93,70	 92,84	 94,77	

Chest	 97,45	 97,28	 97,67	

Waist	 98,61	 98,85	 98,30	

Wrist	 89,74	 84,13	 96,77	

Thigh	 96,42	 94,20	 99,19	

Ankle	 95,58	 93,34	 98,39	

(c)	RC	

Head	 97,17	 98,57	 95,41	

Chest	 98,61	 99,07	 98,03	

Waist	 98,89	 99,28	 98,39	

Wrist	 94,63	 96,35	 92,47	

Thigh	 98,77	 99,00	 98,48	

Ankle	 98,77	 98,85	 98,66	

(d)	RF	

Head	 96,77	 99,36	 93,51	

Chest	 98,61	 99,28	 97,76	

Waist	 99,28	 99,64	 98,84	

Wrist	 95,62	 98,28	 92,29	

Thigh	 99,20	 99,43	 98,93	

Ankle	 98,77	 99,07	 98,39	

(e)	SMO	

Head	 97,29	 97,92	 96,49	

Chest	 98,89	 99,28	 98,39	

Waist	 99,36	 99,50	 99,19	

Wrist	 96,78	 97,71	 95,61	

Thigh	 99,48	 99,21	 99,82	

Ankle	 98,57	 98,85	 98,21	

	

Table	3	shows	the	achieved	results	in	terms	of	accuracy,	sensitivity	and	specificity	for	
each	sensor	 location	for	the	J48,	 IBk,	RC,	RF	and	SMO	algorithms,	respectively.	The	
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position	 resulting	 in	 the	 best	 accuracy	 is	 highlighted	 in	 boldface	 font	 in	 the	 table.	
Figure	 4	 shows	 a	 comparative	 diagram	 across	 different	 body	 locations	 for	 each	
classification	model.		

	
Figure 4: Bar graph showing the accuracy of all classification models for all sensors. 

	

The	accuracy,	sensitivity	and	specificity	of	the	classification	shows	high	results	for	all	
classifiers.	The	overall	highest	accuracy	(99.48%)	for	the	thigh	sensor	location	using	
the	SMO	classifier.	For	this	case,	the	obtained	sensitivity,	 i.e.,	the	fraction	of	actual	
falls	which	are	correctly	 identified	as	such	is	99.21%	and	the	specificity,	that	 is,	the	
proportion	of	ADLs,	that	were	correctly	classified	as	such	is	99.82%.		

Additionally,	we	observe	that	placing	the	sensors	at	 the	waist	achieves	 the	highest	
accuracy	values	for	the	RF	(99.28%),	RC	(98.89%)	and	k-NN,	IBk	(98.61%)	classifiers.	
Such	 results	agree	with	our	 intuition	 for	 the	superiority	of	waist	 location	based	on	
the	fact	that	it	is	near	the	body's	center	of	gravity.	Finally,	for	the	J48	classifier,	the	
most	accurate	sensor	location	is	the	thigh,	reaching	98.24%	accuracy.		

To	 summarize,	 the	 waist	 and	 thigh	 sensors	 achieve	 the	 highest	 accuracies	 for	 all	
classifiers,	followed	by	the	chest	and	ankle	sensors.	The	wrist	sensor	is	the	one	with	
the	lowest	accuracy	for	all	classifiers.	It	is	noteworthy,	however,	that	placing	a	single	
sensor	at	any	of	the	proposed	locations	achieves	accuracy	higher	than	90%	and	there	
are	 cases	 where	 the	 differences	 among	 the	 sensors	 are	 not	 significant,	 especially	
when	comparing	the	most	accurate	sensor	locations	such	as	the	thigh	and	the	waist.	

	

3.1.6 Android	app	
In	 cooperation	with	 CERTH,	 an	Android	 app	was	 developed	 that	 implemented	 the	
described	 fall	 detection	 algorithm	 towards	 detecting	 falls	 in	 real-time.	 The	 first	
version	of	the	app	used	the	sensors	(accelerometer,	gyroscope	and	magnetometer)	
of	 the	 smartphone	 purchased	 for	 FrailSafe	 project	 (Google	 Nexus	 5X).	 When	 the	
sensorized	vest	(WWBS)	was	made	available	to	the	consortium	by	Smartex,	the	app	
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was	modified	 so	 that	 the	detection	of	 falls	would	be	performed	using	 sensor	data	
from	WWBS	instead	of	the	smartphone.	This	was	made	possible	using	the	WWBS	API	
for	 Android	 developed	 by	 CERTH,	 which	 is	 described	 in	 detail	 in	 D3.3	 “WWBS	
Prototype”.	 The	 API	 handles	 all	 Bluetooth	 communication	 with	 the	 WWBS	 and	
enables	 the	 easy	 consumption	 of	 the	 WWBS	 sensor	 and	 IMU	 data	 by	 the	 Fall	
Detector	app.	At	the	time	of	writing,	the	Fall	Detector	app	has	an	option	to	switch	
between	using	the	smartphone’s	internal	sensor	or	detect	and	connect	to	a	WWBS	
via	Bluetooth.	The	final	version	of	the	app	includes	a	“Stability	Index”	as	well,	which	
is	described	in	the	next	section.	

Since	 the	 input	 data	 come	 from	 a	 different	 source	 (the	WWBS),	 the	 classification	
model	 had	 to	be	 retrained.	Under	 this	 premise,	 a	 new	 set	 of	measurements	were	
recorded	 by	 young	 volunteers,	 who	 performed	 ADLs	 and	 falls	 in	 controlled	
environment.	The	types	and	repetitions	of	the	ADLs	and	falls	are	depicted	in	Table	4	
and	Table	5	respectively.	

	
Table 4: Types of ADLs performed 

ADL	type	 Number	of	trials	

Sit-chair	 5	

Sit-sofa	 5	

Stand	 1	

Walk-forward	 1	

Walk-downstairs	 1	

Walk-upstairs	 1	

Lying	 1	

Lying-bed	 5	

Rising-bed	 5	

Bend-90	degrees	 5	

Bend-pick	up	 5	

Jump	 5	

Limp	 1	

	
Table 5: Types of falls performed 

Fall	type	 Number	of	trials	

Back-sit	 5	

Front-knees	 5	
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Front-left	 5	

Front-right	 5	

Front-knees	lying	 5	

Front-protected	lying	 5	

Syncope	 5	

	

The	data	collected	from	the	volunteer	were	used	to	build	a	new	classification	model,	
according	 to	 the	previously	 described	methodology.	 The	data	of	 the	 input	 sensors	
are	 packetized	 in	 time	 windows	 and	 for	 each	 window	 the	 selected	 features	 are	
extracted.	Then	based	on	the	extracted	features	each	window	is	classified	as	“Fall”	
or	“ADL”.	The	only	difference	in	comparison	to	the	first	model	is	that	magnetometer	
has	now	been	excluded	 from	the	analysis,	 since	many	 instances	were	misclassified	
when	 using	 this	 sensor,	 whereas	 after	 the	 exclusion	 the	model	 outperformed	 the	
previous	 case.	 The	 retrained	 model	 has	 been	 tested	 in	 lab	 environment	 and	
performs	well	with	high	 classification	accuracy	 results.	 In	order	 to	 validate	our	 fall	
detection	models	using	data	obtained	 from	older	people,	we	plan	 to	use	 recorded	
sessions	 of	 FrailSafe	 participants	which	 include	 falls	 (that	 have	 been	 later	 verified	
using	follow	up	calls).		

	

3.2 Loss	of	stability	
Falls,	as	analyzed	above,	are	a	common	cause	of	injury	among	older	people	and	one	
of	 the	most	 frequent	 injury-inducing	events	as	a	 result	of	ageing.	While	 significant	
research	had	been	done	on	the	field	of	 fall	detection,	and	numerous	systems	have	
been	proposed	as	 a	 result,	 fall	 detection	 consists	 of	 a	binary	decision	 system,	 and	
there	 is	 a	 need	 for	 research	 on	 a	 continuous	metric	 tracking	 the	 instability	 of	 an	
older	 person’s	 gait	 pattern	 in	 order	 to	 assess	 the	 risk	 of	 a	 fall	 event	 occurring.		
Failsafe	 aims	 to	 implement	 innovative	 strategies	 to	 accurately	 assess	 the	 Loss	 of	
Stability	(LoS)	of	an	older	person,	and	estimate	the	risk	falling.	

3.2.1 Related	Work	–	State	of	the	art	
Loss	of	Stability,	as	described	above,	overlaps	with	the	general	field	of	gait	analysis,	
where	 significant	 research	 has	 been	 conducted	 for	 clinical	 applications,	 and	
specifically	for	assessing	the	state	of	ageing.	Specialists	assess	participants’	health	by	
using	 various	methods	 that	measure	 the	parameters	which	most	 clearly	 represent	
the	 human	 gait.	 Literature	 research	 shows	 that	 the	 following	 parameters	 are	
estimated:	

•	Velocity	
•	Short	step	length	(linear	distance	between	two	successive	placements	of	
the	same	foot)	
•	Long	step	or	stride	length	(linear	distance	between	the	placements	of	both	
feet)	
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•	Cadence	or	rhythm	(number	of	steps	per	time	unit)	
•	Step	width	(linear	distance	between	two	equivalent	points	of	both	feet)	
•	Step	angle	(direction	of	the	foot	during	the	step)	
•	Short	step	time	
•	Swing	time	for	each	foot	(time	from	the	moment	the	foot	lifts	from	the	
floor	until	it	touches	it	again,	for	each	foot)	
•	Support	time	(time	from	the	moment	the	heel	touches	the	floor	until	the	
toes	are	lifted,	for	each	foot)	
•	Distances	travelled	
•	Gait	autonomy	(the	maximum	time	a	person	can	walk,	taking	into	account	
the	number	and	duration	of	the	stops)	
•	Duration	of	the	stops	
•	Existence	of	tremors	when	walking	
•	Record	of	falls	
•	Uneven	terrain	covered	(height	difference	between	drops	and	rises)	
•	Routes	taken	
•	Gait	phases	
•	Direction	of	leg	segments	
•	Ground	Reaction	Forces	
•	Angles	of	the	different	joints	(ankle,	knee,	hip)	
•	Electrical	activity	produced	by	muscles	(EMG)	
•	Momentum	and	forces	
•	Body	posture	(bending,	symmetry)	
•	Maintaining	gait	over	long	time	periods	

	
While	several	of	the	above	parameters	(e.g.	Gait	phases,	body	posture,	assymetrical	
step	 time	 etc.)	 can	 provide	 an	 insight	 on	 the	 asymmetry/instability	 of	 an	 older	
person’s	 walking	 pattern,	 most	 of	 the	 related	 literature	 makes	 use	 of	 systems	
available	 only	 in	 a	 controlled	 indoor	 scenario,	 i.e.	 Non	Wearable	 Systems	 (NWS),	
such	 as	 body	 tracking	 systems	 (Vicon),	 3D	 Cameras	 (Kinect)	 and	 other	 tracking	
equipment	 that	 can	 produce	 a	 very	 accurate	 reconstruction	 of	 a	 person’s	 gait.	
Wearable	 Systems	 (WS),	 like	 the	 Frailsafe	 WWBS,	 do	 not	 offer	 so	 accurate	
measurements,	but	provide	sustainability	on	long-term	analysis,	and	can	be	applied	
to	the	outdoor	scenario	as	well	and	evaluate	gait	during	the	participant’s	everyday	
activities	 outside	 the	 laboratory.	 One	 of	 the	 most	 promising	 and	 widely	 used	
wearable	sensors	in	recent	studies	is	the	inertial	sensor.	In	the	following	paragraphs,	
we	present	an	account	of	 studies	 that	demonstrate	 the	validity	and	wide	 range	of	
applications	of	this	type	of	sensor	in	recent	researches.	
	
Studies	 such	 as	 (Anna	 et	 al.,	 2013)	 in	which	 they	 contrast	 gait	 symmetry	 and	 gait	
normality	 measurements	 obtained	 with	 inertial	 sensors	 and	 3D	 kinematic	
measurements	and	clinical	assessments,	demonstrate	that	the	inertial	sensor-based	
system	 not	 only	 correlates	 well	 with	 kinematic	 measurements	 obtained	 through	
other	methods,	but	also	corroborates	various	quantitative	and	qualitative	measures	
of	recovery	and	health	status.	This	type	of	sensor	has	also	proven	to	be	very	useful	
to	 create	 fall-risk	 prediction	 models	 with	 a	 high	 degree	 of	 accuracy	 (62%–100%),	
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specificity	(35%–100%)	y	sensitivity	(55%–99%),	depending	on	the	model,	as	shown	
in	the	study	by	(Howcroft	et	al.,	2013).	In	the	work	of	(Adachi	et	al.,	2012)	a	walking	
analysis	 system	 was	 developed	 that	 calculates	 the	 ground	 reaction	 force,	 the	
pressure	 centre,	 reactions	 and	movement	 of	 each	 joint	 and	 the	 body	 orientations	
based	 on	 portable	 force	 plates	 and	motion	 sensors.	 They	 compared	 a	 3D	motion	
analysis	 system	 with	 their	 system	 and	 showed	 its	 validity	 for	 measurements	 of	
ground	 reaction	 force	 and	 the	pressure	 centre	 (Adachi	 et	 al.,	 2012).	 (Novak	 et	 al.,	
2013)	have	 recently	developed	a	 system	based	on	 inertial	 and	pressure	 sensors	 to	
predict	gait	initiation	and	termination.	They	demonstrated	that	both	types	of	sensors	
allow	timely	and	accurate	detection	of	gait	initiation,	with	overall	good	performance	
in	 subject-independent	 cross-validation,	 whereas	 inertial	 measurement	 units	 are	
generally	 superior	 to	 pressure	 sensors	 in	 predicting	 gait	 termination	 (Novak	 et	 al.,	
2013).	
	
Inertial	 sensors	 can	be	used	 to	estimate	walking	 speed	by	various	methods,	which	
are	 described	 in	 the	 review	 by	 (Yang	 and	 Li,	 2012).	With	 a	 view	 to	 improving	 the	
usability	of	 these	systems,	 studies	 such	as	 (Salarian	et	al.,	2013)	 focus	on	 reducing	
the	number	of	sensors	that	have	to	be	placed	on	the	body.	They	have	also	managed	
to	estimate	movements	of	thighs	from	movements	of	shanks	to	reduce	the	number	
of	 sensing	 units	 needed	 from	 4	 to	 2	 in	 the	 context	 of	 ambulatory	 gait	 analysis.	
Inertial	Measurement	Units	(IMUs)	are	one	of	the	most	widely	used	types	of	sensors	
in	gait	analysis.	Anna	et	al.	developed	a	system	with	inertial	sensors	to	quantify	gait	
symmetry	and	gait	normality	(Anna	et	al.,	2013),	which	was	evaluated	in-lab,	against	
3D	 kinematic	 measurements;	 and	 also	 in	 situ,	 against	 clinical	 assessments	 of	 hip-
replacement	 patients,	 obtaining	 a	 good	 correlation	 factor	 between	 the	 different	
methods.	In	another	recent	study,	Ferrari	et	al.	presented	an	algorithm	to	estimate	
gait	 features	 which	 were	 compared	 with	 camera-based	 gold	 standard	 system	
outcomes,	showing	a	difference	 in	step	 length	below	5%	when	considering	median	
values	(Ferrari	et.	al.,	2013).	In	diseases	where	gait	disorders	are	a	symptom	such	as	
Parkinson’s,	 we	 find	 several	 applications	 of	 sensors	 of	 this	 type	 (Salarian	 et.	 al.,	
2004):	 Tay	 et	 al.	 presented	 a	 system	with	 two	 integrated	 sensors	 located	 at	 each	
ankle	 position	 to	 track	 gait	 movements	 and	 a	 body	 sensor	 positioned	 near	 the	
cervical	 vertebra	 to	monitor	 body	 posture.	 The	 system	was	 also	 able	 to	measure	
parameters	 such	 as	maximum	 acceleration	 of	 the	 participants	 during	 standing	 up,	
and	the	time	it	takes	from	sit	to	stand	(Tay	et.	al.,	2013).	
	
Still,	 no	 significant	work	has	been	done	on	establishing	a	metric	 that	 indicates	 the	
gait	 instability,	 while	 complying	 with	 the	 light	 set	 of	 specifications	 needed	 for	 a	
wearable	 system	 to	 be	 as	 unobtrusive	 as	 possible.	 Considering	 the	 latter,	 we	
developed	a	technique	in	order	to	accurately	estimate	LoS	by	using	only	one	(1)	IMU,	
placed	 near	 the	 chest,	 as	 designed	 in	 the	 Frailsafe	 vest,	 by	 estimating	 the	 gait	
orientation	asymmetry	of	the	user.	
	

3.2.2 LoS	via	Secondary	Gait	Component	Analysis	
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Following	the	detailed	literature	review	above,	and	the	restrictions	 imposed	by	the	
specifications	of	the	vest	wearable	system,	we	developed	an	algorithm	based	on	PCA	
decomposition	of	the	raw	acceleration	signals	provided	by	the	Inertial	Measurement	
Unit	 of	 either	 a	 mobile	 phone,	 or	 the	 WWBS,	 communicated	 to	 the	 gateway	
smartphone	device	for	processing.	As	can	be	seen	in	Figure	6,	the	processing	pipeline	
consists	of	the	following	steps:	

1. High-Pass	Filtering	of	the	Raw	data:	This	step	is	necessary	to	eliminate	any	
sensor	bias	imposed	by	the	sensors	or	the	environment	(e.g.	gravity)	and	
study	only	the	dynamic	components	of	the	acceleration.	

2. PCA:	Principal	Component	Analysis	(PCA)	is	commonly	used	in	signal	
processing	algorithms	because	it	accurately	decomposes	noisy	multi-
dimensional	data	into	its	principal	and	secondary	components.	Considering	
that	we	are	analyzing	gait	asymmetry/instability,	and	the	fact	that	a	
Kinematic	measurement’s	principal	component	concerns	the	Kinematics	
regarding	the	gait	orientation	of	the	participant,	we	eliminate	the	Principal	
Component	and	instead	use	the	Secondary	Gait	Components.	Our	main	
hypothesis	is	that	these	measurements	should	be	considerably	lower	in	a	
stable	gait	pattern,	and	their	energy	should	increase	as	the	gait	becomes	
more	unstable.	

	

	
Figure 5. Loss of Stability estimation pipeline. 

	

3. Reconstruction	&	Integration:	In	this	steps,	we	reconstruct	the	decomposed	
secondary	gait	signals,	from	the	separated	Euclidean	coordinates	into	a	3D	
timeseries	signal	that	enables	us	to	study	secondary	dynamics	to	the	
participant’s	gait	(lateral	movements,	minor	instabilities,	staggering	etc.).	
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3.2.3 Preliminary	Evaluation	
Since	the	detection	system	is	in	prototype-phase	and	all	calculations	are	evaluated	in	
an	 offline	 setup,	 we	 performed	 a	 preliminary	 test	 with	 5	 healty	 participants	 that	
were	 asked	 to	 perform	 10	 second	walking	 sessions	 with	 increasing	 instability	 and	
staggering	and	studied	the	results.	As	can	be	seen	in	Figure	7,	the	techniques	output	
signal,	 which	 should	 represent	 the	 gait’s	 secondary	 motion	 dynamics,	 shows	
consistent	 increase	 in	 amplitude,	 which	 is	 encouraging	 for	 the	 viability	 of	 the	
estimator.	

	
Figure 6. Output Signal color-labeled (x, y, z) for increasing state of severity (top to down). 
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Figure	8	shows	the	Signal	Power	corresponding	to	each	subject	(different	slices),	and	
each	trial	with	increasing	instability	(blue-green-red).	In	each	case,	the	signal	power	
increased	as	the	participant	exhibited	poorer	gait	stability.		

	

	
Figure 7. Results from our technique show a distinctive difference between different levels of 

instability severity. 

	

Given	 the	 encouraging	 results,	 we	 proceeded	 to	 the	 implementation	 of	 the	
technique	on	the	mobile	device,	in	order	to	process	live	vest	data,	and	perform	the	
evaluation	 on	 a	 larger	 set	 of	 participants,	 that	may	 exhibit	 non-induced	 instability	
and	establish	different	 severity	 thresholds,	 depending	on	 the	 signal	 power’s	 range	
for	the	participants,	as	well	as	also	explore	the	possibility	of	establishing	a	dynamic	
treshodling	mechanism	that	adapts	to	the	participant’s	gait	pattern.	

	

3.2.4 Integration	of	LoS	in	the	Fall	Detector	app	
As	described	earlier	 in	this	deliverable,	the	above	prototype	implementation	of	the	
LoS	algorithms	were	properly	developed	to	be	used	in	mobile	devices	and	integrated	
in	 the	 Fall	 Detector	 app.	 As	 can	 be	 seen	 in	 Figure	 9,	 by	 choosing	 the	 option	 to	
estimate	the	Stability	Index,	the	main	screen	has	been	altered	to	show	a	live	chart	of	
the	stability	index,	instead	of	that	of	the	magnetometer.		
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Figure 98. Main Screen of the Fall Detector app. Left: Plots showing the Accelerometer, 
Gyroscope and Magnetometer data. Right: Magnetometer chart has been replaced by the 

Stability Index chart. 

	

3.3 Loss	of	orientation	
Loss	of	Orientation	is	a	potentially	life-threatening	and	common	behavior	seen	in	the	
elderly,	 specifically	Dementia	and	Alzheimer’s	patients.	Between	60%	to	70%	of	all	
patients	with	Alzheimer’s	will	wander,	and	possibly	get	lost,	at	some	point	during	the	
course	of	their	disease,	of	these	a	staggering	50%	will	die	if	they	are	not	found	within	
24	hours.	 Loss	of	 spatial	navigation,	 and	more	generally,	 Loss	of	Orientation	 (LoO)	
has	 gained	 much	 attention	 from	 both	 the	 research	 community	 and	 the	 industry,	
trying	 to	 explain	 the	 physiological	 reasons	 behind	 it,	 as	well	 as	 develop	 necessary	
systems	 in	 order	 to	 detect	 it.	 The	majority	 of	 the	 systems	proposed	 are	 based	on	
tracking	 information,	 geo-fencing,	 i.e.	 predefined	 boundaries	 of	 where	 the	
participant	 is	 supposed	 to	 be,	 and	 alerting	 systems	 aimed	 to	 inform	 the	 caregiver	
that	a	participant	 is	probably	wandering.	However,	 these	systems	assume	a	higher	
level	of	severity,	where	the	user	is	usually	strictly	monitored	in	a	controlled	manner,	
and	doesn’t	qualify	as	an	early	warning	system	(EWS)	for	 initial	symptoms.	We	aim	
to	 explore	 LoO	 detection	 possibilities	 and	 implement	 a	 system	 that	 automatically	
detects	 a	 probable	wandering	 episode	 using	 a	 combination	 of	 standard	 and	 novel	
detection	 techniques	and	 serve	as	 a	EWS	 for	 the	prefrail	 and	detect	early	 signs	of	
dementia.	

3.3.1 Related	Work	–	State-of-the-art	
Loss	 of	 Orientation	 is	 among	 the	 most	 problematic,	 frequent,	 and	 dangerous	
behaviors	 of	 people	with	 dementia	 (PwD)	 and	 the	 frail,	 accounting	 for	 15–60%	of	
individuals	with	a	clinical	diagnosis	of	dementia	and	related	impairments	(Ballard	et	
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al.,	1991).	It	includes	a	variety	of	behaviors,	which	are	often	originated	from	diverse	
factors	(Chan	et	al,	2003).	A	lot	of	research	has	revealed	that	the	frequent	wanderers	
are	more	likely	to	experience	adverse	events	such	as	falling,	elopement,	getting	lost,	
and	 emotional	 distress.	 Furthermore,	 wandering	 is	 also	 the	 main	 reason	 of	 early	
institutionalization.	 Traditional	 methods	 to	 prevent	 the	 elderly	 from	 wandering	
include	 imposing	 physical	 restraints	 and	 medication.	 Because	 of	 the	 physical	 or	
psychological	 problems	 caused	 by	 physical	 restraints	 and	 the	 side	 effects	 of	
neuroleptic	 drugs,	 traditional	 methods	 are	 not	 always	 effective	 for	 protecting	
wanderers,	especially	for	those	who	are	prone	to	falling	or	unsafe	wandering	(Moore	
et	al.,	2009).	Alternatively,	nonpharmacological	intervention	has	been	recommended	
to	 manage	 rather	 than	 prevent	 wandering,	 highlighting	 a	 shift	 from	 prevention	
toward	 assisting	 safe	 walking.	 The	 main	 methods	 of	 nonpharmacological	
intervention	 include	 motion	 tracking,	 behavioral	 intervention,	 cognitive	
rehabilitation,	and	design/modification	of	living	environments	(Cohen-Mansfield	and	
Werner,	1998).	

3.3.1.1 Problem	definition	

Different	 attempts	 for	 the	 classification	of	wandering	behavior	 exist	 (Algase	 et	 al.,	
2001,	Algase	et	al.,	2004).	One	of	the	most	cited	classification	proposed	by	(Martino-
Saltzman	 et	 al.,	 1991)	 categorizes	 wandering	 movement	 of	 the	 elderly	 into	 three	
different	spatial	categories:	(1)	Pacing:	back	and	forth	movement	between	any	two	
points	 (i.e.,	 physical	 locations);	 (2)	 Lapping:	 circuitous	 movement	 revisiting	 some	
points	 sequentially	 along	 a	 path;	 and	 (3)	 Random:	 haphazard	 movement	 without	
repeating	 points	 in	 a	 traveling	 sequence.	 Additionally,	 (Algase	 et.	 al,	 1991)	
introduced	temporal	factor	into	the	aforementioned	spatial	patters	and	represented	
wandering	movement	as	 spatiotemporal	 locomotion.	The	 locomotion	 refers	 to	 the	
rhythmical	movements	consisting	of	two	phases:	walking	and	nonwalking.	During	the	
walking	 phase,	 the	 disoriented	 participant	 would	 wander	 following	 the	 pacing,	
lapping,	and	random	pattern.	After	every	walking	phase,	there	will	be	a	nonwalking	
duration,	 which	 may	 differ	 from	 person	 to	 person	 and	 be	 closely	 related	 to	 the	
environmental	situations.	

3.3.2 Detection	techniques	
There	 are	 two	 main	 research	 objectives	 pertaining	 to	 wandering	 of	 the	 PwD:	
wandering	 evaluation	 and	 wandering	 detection.	 Wandering	 evaluation	 targets	
recognition,	evaluation,	and	testing	of	wandering	movements	 to	 find	new	patterns	
and	characteristics	of	wandering	behavior	based	on	offline	analysis	of	trajectory	data	
collected	 from	 sensors	 deployed	 in	 indoor	 environments.	 Wandering	 detection	
focuses	on	design,	development,	and	deployment	of	assistive	systems	to	provide	the	
elderly	safety	assurance	based	on	online	observations	of	sensors	deployed	in	indoor	
or	outdoor	settings.	Three	types	of	key	techniques	were	applied	in	existing	work	for	
wandering	 research:	 event	 monitoring,	 trajectory	 tracking,	 and	 localization	
combined	with	Geo-fence	technique.	Frailsafe	aims	to	exploit	the	GPS	Tracker	app	to	
employ	 both	 the	 geo-fencing	 technique,	 and	 the	 trajectory	 tracking	 technique	 to	
explore	the	best	possible	strategy	for	a	robust	and	stable	Loss	of	Orientation	System,	
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as	well	to	propose	a	new	metric	to	detect	random,	but	spatially	relatively	stationary	
patterns	that	elude	detection	from	the	abovementioned	techniques.	

3.3.2.1 Geo-fencing	

Geofencing	is	one	of	the	components	in	the	wider	spectra	of	Ambient	Assisted	Living	
related	applications.	Such	applications	are	meant	to	provide	support	to	persons	with	
disabilities	or	to	those	 impaired,	as	well	as	to	their	caretakers.	Within	this	context,	
geofencing	targets	the	safe	mobility	of	such	persons.	A	geofencing	service	monitors	
constantly	 the	 position	 of	 a	 person	 and	 automatically	 generates	 alerts	 and	
notifications	when	the	person	enters,	 leaves	or	moves	within	a	specific	geographic	
area,	allowing	 the	detection	of	being	 lost	and	generating	appropriate	 intervention.	
The	service	can	be	addressed	to	elderly	persons,	being	able	to	send	an	alert	(such	as	
a	 SMS	 message)	 to	 a	 caregiver	 when	 the	 participant	 has	 averted	 a	 predefined	
distance	from	a	selected	location.	This	type	of	service	has	become	more	popular	in	
the	modern	 society	 since	 it	 has	 the	 ability	 of	 increasing	 the	 quality	 of	 life	 for	 the	
elderly	people,	many	of	which	are	living	independently.	(Wong	et.	al.,	2009),	present	
a	 geofencing	 service	 application.	 They	 provide	 a	 complete	 system	 for	 tracking	
persons,	especially	elderly	people,	and	their	application	can	be	extended	to	provide	
a	 geofencing	 solution.	 The	 system	 consists	 of	 a	 wearable	 AGPS	 (Assisted	 Global	
Positioning	 System)	 terminal	 with	 two-way	 communication	 capability	 and	 a	 GPS	
(Global	 Positioning	 System)	 assistance	 data	 server.	 This	 approach	 has	 a	 drawback	
because	 it	 forces	 the	 end-user	 to	 use	 a	 dedicated	 device	 for	 GPS	 based	 location	
acquisition	and	for	the	data	transmission	to	the	server.	 In	their	paper	(Ryoo	et.	al.,	
2012)	present	a	geofencing	service	solution	which	uses	mobile	devices	 for	 location	
acquisition	 and	 data	 transmission.	 They	 developed	 an	 energy-aware	 proactive	
framework	 that	 uses	 different	 communication	 technologies	 and	 sensors	 based	 on	
their	energy	usage,	provided	accuracy	and	availability.	The	proposed	solution	tracks	
the	 location	 of	 a	 person	 outdoor	 using	 the	 GPS	 sensor	 of	 the	 mobile	 device	 and	
indoor	using	3G	or	WiFi	 interfaces.	Frailsafe	already	employs	 these	 technologies	 in	
the	outdoor	monitoring	app	GPS	Tracker,	and	we	exploit	existing	mobility	patterns	of	
the	older	person	to	create	geofencing	boundaries,	making	it	easier	for	the	caretaker	
to	deploy	the	system	without	needing	to	manually	set	predefined	boundaries.	

3.3.2.2 Trajectory	tracking-based	LoO	detection	

The	trajectory	tracking	technique	is	used	to	acquire	fine-grained	motion	trajectories,	
enabling	 the	 detection	 of	 spatiotemporal	 wandering	 trajectories	 based	 on	 the	
wandering	patterns.	 (Martino-Saltzman	et	al.,	 1991)	 investigated	 travel	 patterns	of	
wandering	participants	based	on	data	acquired	 from	electronic	ankle	 tags	worn	by	
participants.	 In	 their	 experiments,	 an	 automatic	 detection	 system-activated	 video	
recording	of	travel	activity	in	real	time	to	record	the	ground	truth,	and	four	different	
patterns	 of	 direct,	 pacing,	 lapping,	 and	 random	movement	 have	 been	 found	 from	
more	 than	 10,000	 recordings	 of	 40	 participants.	 Among	 these	 patterns,	 the	 direct	
pattern	 is	normal	and	the	remaining	patterns	 link	to	wandering	behavior.	A	similar	
work	proposed	by	(Algase	et	al.,	2003)	uses	commercial	off-the-shelf	biomechanical	
devices	 to	 capture	 movements	 of	 residents	 with	 dementia	 in	 nursing	 homes.	
Wandering	behavior	is	determined	by	either	counting	the	number	of	steps	made	by	
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residents	 (StepWatch,	National	 Institute	of	 Child	Health	 and	Human	Development,	
Rockville,	 USA	 and	 StepSensor,	 TippToes	 Ltd,	 Tippeary,	 Ireland)	 or	 measuring	
locomotion	in	three-dimensional	spaces	(Actillume,	PHILIPS,	Eindhoven,	Netherlands	
and	 TriTrac-R3D,	 The	 Consortium	 to	 Lower	 Obesity	 in	 Chicago	 Children	 (CLOCC),	
Chicago,	USA).	The	authors	 found	that	StepWatch	sensor	 is	particularly	effective	 in	
assessing	 the	 amount	 of	 wandering	 behavior.	 A	 series	 of	 studies	 focused	 on	 path	
tortuosity	has	been	performed	by	(Kearns	et	al.,	2010)	using	RFID	devices	in	common	
indoor	 living	 spaces.	 Path	 tortuosity	 is	 defined	 as	 the	 number	 of	 changes	 in	
directions	 of	 successive	 movement	 paths,	 and	 measured	 by	 leveraging	 fractal	 D	
(fractal	 dimension)	 technique.	 The	 value	 of	 fractal	 D	 ranges	 from	1,	where	 a	 path	
follows	a	perfectly	straight	 line,	 to	a	value	of	2,	where	the	path	 is	 tortuous	(in	 line	
with	 the	 random	 pattern26).	 Their	 experimental	 results	 correctly	 classified	 all	 but	
two	residents	with	dementia,	and	achieved	a	sensitivity	of	0.857	and	a	specificity	of	
0.818.	

The	Escort	system	(Taub	et	al,	2011)	is	designed	to	protect	wander-prone	residents	
from	 experiencing	 negative	 events.	 The	 mesh-networked	 badges	 carried	 by	 users	
can	 sense	 location	 and	 communicate	 with	 a	 central	 server.	 Location	 data	 are	
obtained	from	a	‘talking	lights’	optical	location	setup	that	uses	ordinary	light	fixtures	
and	other	light	sources	as	location	beacons.	Caregivers	were	responsible	for	keeping	
devices	charged,	attaching	them	to	residents’	clothing	in	the	morning,	and	removing	
them	at	night.	This	 iteration	of	 the	study	ran	for	12	weeks	from	September	1	until	
November	22,	2008.	Focusing	on	outdoor	wandering	of	the	elderly,	(Lin	et	al.,	2012)	
investigated	real-time	detection	of	pacing	and	 lapping	movements	 from	users’	GPS	
traces.	Based	on	the	spatial	wandering	patterns,	a	data-driven	method	was	proposed	
to	examine	and	count	turning	points	 in	any	ongoing	trajectory.	The	angular	sum	of	
the	found	turning	points	is	chosen	as	a	basis	to	determine	whether	a	trace	is	lapping	
or	 pacing.	 Experimental	 results	 showed	 that	 the	 proposed	method	 is	 workable	 in	
detecting	 lapping	 and	 pacing	 wandering	 locomotion	 investigated	 to	 detect	
deviations	 from	 traveling	 trajectories.	 We	 extended	 the	 above	 strategy,	 in	
combination	 with	 activity	 classification	 and	 frequent	 destinations,	 in	 order	 to	
perform	real-time	detection	of	a	possible	LoO	event.	

3.3.2.3 GPS	Bearing	deviation	

Following	 the	 above	 assumptions	 of	 optimal	 trajectory,	 and	 the	 definition	 of	 LoO	
events	 by	 (Martino-Saltzman	 et	 al.,	 1991)	 about	 pacing	 and	 random	 pattern	
wandering,	 we	 explored	 a	 novel	 LoO	 detection	 technique	 to	 be	 used	 along	 the	
aforementioned	 ones,	 specifically	 designed	 to	 detect	 non-mobile	 LoO	 events.	
Assuming	 that	 an	 optimal	 route	 is	 desired,	 one	 can	 derive	 that	 the	 GPS	 bearing	
reading,	i.e.	the	direction	of	facing	of	the	user,	has	small-to-zero	deviation	when	the	
user	follows	a	relatively	straight	path	to	his	destination.	Therefore,	we	explored	the	
properties	 of	 the	 bearing	 timeseries	 signal	 of	 both	 stationary	 LoO	 events,	 and	
trajectory-varying	 events,	 in	 a	 signal-processing	 manner,	 to	 develop	 a	 candidate	
criterion	for	the	detection	of	random-patterned	Loss	of	Orientation	and	wandering	
events,	synergizing	with	abovementioned	techniques	in	order	to	provide	a	complete	
early	warning	system	of	LoO	events.	
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3.3.1 Loss	of	Orientation	service	
Using	 the	 preliminary	 research	 described	 above,	 and	 the	 problem	 definition	 of	
estimating	 a	 Loss	 of	 Orientation	 event,	 the	 Loss	 of	 Orientation	 service	 was	
developed,	along	with	a	Graphical	User	Interface	front-end,	the	Loss	of	Orientation	
app.	The	LoO	service	is	a	set	of	implemented	functionalities,	addressing	the	problem	
definition	of	 extracting	a)	 geo-fencing	alarm,	b)	 estimating	 lapping	patterns	 and	 c)	
estimating	 pacing	 patterns.	 The	 architectural	 modules	 of	 this	 application	 are	
described	 in	 detail	 in	 D1.4	 “FrailSafe	 technical	 specifications	 and	 end-to-end	
architecture”,	along	with	its	interactions	with	other	modules	of	the	Frailsafe	system,	
its	output	parameters	and	its	Data	I/Os.	The	module	requests	daily	localization	logs	
from	 the	 FrailSafe	 Cloud,	 specifically	 the	Outdoor	 Localization	API,	 and	provided	 a	
polygon	of	 coordinates	 that	 act	 as	 geo-fencing	boundaries	 for	 a	 selected	user,	 the	
module	processes	 the	 localization	 logs	and	after	 filtering	 them,	extracts	wandering	
patterns	and	triggers	geo-fencing	breaching	alarms.		

 

	
Figure 10 - The Loss of orientation app showing: a) GPS Log filtering, b) Geofencing (polygon), 

c) Geofencing (circular) 

	

The	core	functionalities	of	the	Loss	of	Orientation	service	are	the	following:	

• Filter	localization	logs	to	extract	walking	paths,	rejecting	segments	where	the	
user	is	standing	still	or	being	transported	in	a	vehicle	(e.g.	driving).	

• Trigger	a	Geofencing	alarm:	An	alarm	triggered	in	case	the	user’s	logs	
indicate	a	cross	in	his	geofencing	boundaries	

• Extract	Lapping	Index:	An	index	value,	indicating	if	the	user’s	localization	log	
contains	looping	circuit	patterns.	

• Extract	Pacing	Index:	 An	index	value,	indicating	if	the	user’s	walking	path	
contains	back	and	forth	patterns.	
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