
FRAILSAFE – H2020-PHC–690140 D4.8

- 1 -

Project Title: Sensing and predictive treatment of frailty and
associated co-morbidities using advanced personalized
models and advanced interventions

Contract No: 690140
Instrument: Collaborative Project
Call identifier: H2020-PHC-2014-2015
Topic: PHC-21-2015: Advancing active and healthy ageing with

ICT: Early risk detection and intervention
Start of project: 1 January 2016
Duration: 36 months

Deliverable No: D4.8
 LingTester Test Results – Active (on-line) mode

Due date of deliverable: M18 (30th June 2017)
Actual submission date: 29th June 2017
Version: 1
Date: 29th June, 2017

Lead Author: UoP Makrhs Christos
Lead partners: UoP

Ref. Ares(2017)3250952 - 29/06/2017

FRAILSAFE – H2020-PHC–690140 D4.8

- 2 -

CHANGE HISTORY

Ver. Date Status Author (Beneficiary) Description

0.1 01/04/2017 draft
C. Tsimpouris (UoP),

N. Fazakis (UoP) Initial draft

0.2 01/05/2017 draft

C. Tsimpouris (UoP),

N. Fazakis (UoP),

C. Makrhs (UoP)
First draft deliverable report

0.3 12/06/2017 draft

C. Tsimpouris (UoP),

N. Fazakis (UoP),

C. Makrhs (UoP)

Updated deliverable report sent
for internal review

0.4 22/06/2017 draft
C. Tsimpouris (UoP),

N. Fazakis (UoP), Second draft deliverable report.

0.5 23/06/2017 draft
I. Kalamaras (CERTH),

A. Vasilakis (CERTH) Revision of the document

0.6 29/06/2017 final

C. Tsimpouris (UoP),

N. Fazakis (UoP),

C. Makrhs (UoP)

Deliverable finalised taking into
account internal review’s
comments.

FRAILSAFE – H2020-PHC–690140 D4.8

- 3 -

EXECUTIVE SUMMARY
LingTester is the FrailSafe language analysis tool that aims to process the user’s typed text
and detect abnormal behaviour. At this point, the prototype is in early alpha stage, but still it
is able to perform classification according to levels of frailty. The present deliverable
describes the development of the online mode of this tool, which covers all steps needed to
support all necessary user actions while also removing any sensitive information, and thus,
protecting participants’ data.

This deliverable is part of WP4. The main objective of this Work Package is to handle the
collection, management and analysis of frailty older people data streamed through their
social, behavioural, cognitive and physical activities. Offline mode is provided through
deliverable D4.10. LingTester online mode wraps the passive model through an API for easy
access, while also a web tool provides users the ability to subscribe for this service.

FRAILSAFE – H2020-PHC–690140 D4.8

- 4 -

DOCUMENT INFORMATION

Contract Number: H2020-PHC–690140 Acronym: FRAILSAFE

Full title Sensing and predictive treatment of frailty and associated co-morbidities
using advanced personalized models and advanced interventions

Project URL http://frailsafe-project.eu/

EU Project officer Mr. Jan Komarek

Deliverable number: 4.8 Title: LingTester Test Results – Active (on-line) mode

Work package number: 4 Title: Data Management and Analytics

Date of delivery Contractual 30/6/2017 (M18) Actual 29/6/2017

Status Draft � Final x

Nature Report � Demonstrator x Other �

Dissemination
Level

Public x Consortium �

Abstract (for
dissemination)

This deliverable reports on the choices made in the design of the online
LingTester system, sub-systems, technical specifications and architecture.
Firstly an overall introduction to the system concepts, modules and
processes is given; secondly a more detailed presentation of different
layers composing the system architecture - devices, frontend interfaces,
server backend infrastructure - is presented in all its parts

Keywords frailty, frailty classification, natural language processing, API

Contributing
authors

(beneficiaries)

 Tsimpouris Charalampos (UoP)
 Fazakis Nikos (UoP)
 Makrhs Xrhstos (UoP)
 Megalooikonomou Vasileios (UoP)

Responsible
author(s)

Makrhs Xrhstos Email makri@ceid.upatras.gr

Beneficiary UoP Phone +30 2610 996968

FRAILSAFE – H2020-PHC–690140 D4.8

- 5 -

TABLE OF CONTENTS

CHANGE HISTORY 2
EXECUTIVE SUMMARY 3
DOCUMENT INFORMATION 3
TABLE OF CONTENTS 5
LIST OF FIGURES 6
LIST OF TABLES 6
LIST OF ANNEXES 6

1. Introduction 7

2. Overall Architecture 7

3. Frontend 8
3.1 Architecture 8
3.2 Installation 9
3.3 Communication privacy 10
3.4 Anonymization of data 11
3.5 MySQL Database schema 11
3.6 User-flow 12
3.7 Crawler flow 15

4. Backend 17
4.1 Architecture 17
4.2 Installation 18
4.3 API 19

5. Test Results 20
5.1 Introduction 20
5.2 Participants 20
5.3 Classification model 21
5.4 Frailty tests & results 22
5.5 Discussion of the results 24

6. Ethics and Safety 24

7. References 25

8. File structure 27

9. Annexes 28
9.1 SQL initial import script 28
9.2 Frontend 28

9.2.a Requests Router 28
9.2.b Registration 29

9.3 Backend 31
9.3.a Crawler main loop 31

FRAILSAFE – H2020-PHC–690140 D4.8

- 6 -

9.3.b Text Parser 36
9.4 Predictor 37

LIST OF FIGURES

Figure 1: Online mode of LingTester 7
Figure 2: Frontend server, internal architecture 8
Figure 3. MySQL EER diagram. 4
Figure 4: User flow 12
Figure 5: Step 1 14
Figure 6: Step 2 14
Figure 7: Step 3 14
Figure 8: Step 4 15
Figure 9: Crawler algorithmic procedure 16
Figure 10: Backend architecture 17

LIST OF TABLES

Table 1: List of participants 20
Table 2: List of features of the prediction model 21
Table 3: Algorithmic parameters of the prediction model 22
Table 4: Test input 23
Table 5: Prediction test results 23

LIST OF ANNEXES

9.1 SQL initial import script 27
9.2.a Requests Router 27
9.2.b Registration 28
9.3.a Crawler main loop 30
9.3.b Text Parser 34
9.4 Predictor 35

FRAILSAFE – H2020-PHC–690140 D4.8

- 7 -

1. INTRODUCTION
The LingTester online mode is constructed based on two main sub modules, frontend and
backend, as discussed in Chapter 2. Each submodule is also based on different layers of
processes which interact altogether through predefined APIs, existing or custom ones.
Chapter 2 describes the architecture of the LingTester online mode, and is a technical
introduction of how the system is constructed. Chapter 3 explains the frontend in detail, while
Chapter 4 continues to explain how the backend works. Discussion on results is given in
Chapter 5, and finally Chapter 6 is an overall summary about legal issues concerning the
LingTester online tool.

2. OVERALL ARCHITECTURE

The following image (Figure 1) shows the architecture of the online mode of LingTester,
which is discussed in detail within the following chapters. The online mode is based on two
main sub modules, frontend and backend which interact through a predefined API within a
secure Virtual Private Network (VPN). Users (participants in our case) connect only to the
frontend server, as shown in the following figure, and interact with the webservice in a non-
intrusive way only to provide access to the third party social networks. The frontend web
service is only allowed to interact with the backend, in order to request a new prediction
based on the user input, as gathered by the crawler (discussed in detail in Chapter 3.7).

Figure 1: Online mode of LingTester

FRAILSAFE – H2020-PHC–690140 D4.8

- 8 -

3. FRONTEND

The frontend is based on a web server which is publicly available through a known web
address. Currently, this URL address has been set to https://lingtester.frailsafe-project.cloud/.

3.1 Architecture

The architecture of the frontend server is a generic LAMP stack, which can be seen in figure
2. LAMP stands for Linux/Apache/MySQL/PHP (Lee & Ware, 2003) and was selected as an
ideal option that is easy to maintain as it is based on a vast community where bugs are
quickly fixed. In addition, we minimise costs for custom hardware and software due to the
fact that this solution can be easily transferred to a new hardware instance for testing or
scalability purposes.

Figure 2: Frontend server, internal architecture

Furthermore, a cron job1 has been implemented and set to run every minute that initiates the
crawler. This crawler is responsible to fetch new data from:

1 The software utility Cron is a time-based job scheduler in Unix-like computer operating systems.
People who set up and maintain software environments use cron to schedule jobs (commands or shell
scripts) to run periodically at fixed times, dates, or intervals. It typically automates system maintenance

FRAILSAFE – H2020-PHC–690140 D4.8

- 9 -

1. Facebook, for all users that already have authorised access,
2. Twitter, for all users that already have authorised access, and
3. Email submissions, that have been sent at the predefined lingtester mailbox. This

mailbox has been created solely for this purpose and is not used for any other
purpose

3.2 Installation

In order to install the aforementioned frontend server from scratch the following steps should
be reproduced. All commands must be run as root user, in order to overcome any permission
hiccups. While all commands are self-explanatory for Linux administrators (Nemeth, 2006),
they are followed by a small description.

● apt-get install apache2
○ Installs apache necessary binary files

● sudo apt-get install libapache2-mod-php

○ Installs php module, to be available within Apache

● sudo apt-get install mysql-server php7.0-mysql php7.0-mcrypt

○ Install mysql server and necessary MySQL modules to be available from PHP.
While we do not use the local MySQL database, this module is still needed to
connect to the remote one

● wget https://dl.eff.org/certbot-auto
● chmod a+x certbot-auto
● ./certbot-auto

○ Downloads and executes certbot auto, which can auto validate SSL for our
local apache server through a user-friendly wizard

● crontab -e

○ We should insert the following two cron jobs
○ 0 0 1 */2 * ~/certbot-auto renew --no-self-upgrade

■ Update currently installed SSL once per two months

○ * * * * * wget https://lingtester.frailsafe-
project.cloud/crawler/ > /dev/null 2>&1

■ Executes crawler once per minute

● Copy all files needed for the frontend server to run to /var/www/html/

or administration—though its general-purpose nature makes it useful for things like downloading files
from the Internet and downloading email at regular intervals. The origin of the name cron is from the
Greek word for time, χρόνος (chronos). Cron is most suitable for scheduling repetitive tasks.

FRAILSAFE – H2020-PHC–690140 D4.8

- 10 -

● Import SQL script as given in the Appendix 1 into the available MySQL database for
this purpose

● Update all details in the file config.php so as to provide access to the MySQL

database along with the backend
○ $dbHos : the domain name of the MySQL server, which is not necessary to

be a local one. This way, we can scale up and support more than one
frontend servers, that communicate to the same MySQL server and are all in
sync

■ Currently set as mysql-frailsafe-project-cloud.chpnnoj1sagw.eu-
west-1.rds.amazonaws.com:3306

○ $dbUsername : MySQL username
■ Currently set as uop2

○ $dbPassword : MySQL password
■ Currently set as ************ (for security purposes this is only provided

after request)
○ $dbName : MySQL database

■ Currently set as lingtester-db
○ $backend : Full URL path to the prediction backend server. Assuming that

the backend is only accessible through the Frailsafe VPN, the frontend has
already access to the VPN instances.

■ Currently set as http://172.16.2.131:5000

3.3 Communication privacy

The frontend server, as it is publicly available, has been protected behind an SSL certificate
as also shown in figure 2. SSL2 (Ristic, 2010) is the backbone of our secure Internet and it
protects all sensitive information as it travels across the world's computer networks. SSL is
essential for protecting the website, even if it does not handle sensitive information like credit
cards. It provides privacy, critical security and data integrity for both the website and the
user's (participant’s) personal information.

The primary reason why SSL is used is to keep sensitive information sent across the Internet
encrypted so that only the intended recipient can understand it. This is important because the
information sent on the Internet is passed from computer to computer to get to the
destination FrailSafe server. Any computer between the end-user and the server can view
usernames and passwords, and other sensitive information if it is not encrypted with an SSL
certificate. When an SSL certificate is used, the information becomes unreadable to
everyone except for the server the user is sending the information to. This protects it from
hackers and identity thieves.

In addition to encryption, the installed SSL certificate also provides authentication. This
means we can be sure that each user is sending information to the right server and not to an

2 https://en.wikipedia.org/wiki/Transport_Layer_Security

FRAILSAFE – H2020-PHC–690140 D4.8

- 11 -

imposter trying to steal this information. This is important, as the nature of the Internet means
that any user will often be sending information through several computers/routers. Any of
these computers could pretend to be FrailSafe website and trick them into sending them
personal sensitive information.

For our server, a valid SSL certificate has been provided by Let’s Encrypt3, a free,
automated, and open Certificate Authority, brought by the nonprofit Internet Security
Research Group (ISRG). As certificates from this authority get auto expired every 3 months,
another cron task has been set within the Linux system, to auto renew the certificate without
any administration interference.

3.4 Anonymization of data
Our primary concern was to protect participant’s data at all times. Therefore, the first step
after the initial retrieval of new text from the eCRF was to remove any possibly private data of
the following data structures using regular expressions, and therefore we can safely remove
the following well defined classes: credit card numbers, emails, social security numbers,
dates of birth, zip codes. No other version of the text, containing private data, was kept. The
source code has been constructed in modular way to add more rules, if this becomes
necessary.

3.5 MySQL Database schema

An internal database (MYSQL, 2001) has been constructed to support all needed actions,
store anonymised data and keep track of history events. The following image shows the EER
diagram4. Detailed SQL script in order to reconstruct this database is given in Appendix 1.

Figure 3. MySQL EER diagram.

3 https://letsencrypt.org/
4 The enhanced entity–relationship (EER) model (or extended entity–relationship model) in computer
science is a high-level or conceptual data model incorporating extensions to the original entity–
relationship (ER) model, used in the design of databases.

FRAILSAFE – H2020-PHC–690140 D4.8

- 12 -

Each table is discussed in detail in the following paragraph.

Table user: this table stores all users that have concluded the initial process (see chapter
3.6), from which crawler continuously checks for new content.

● idUser: user id, auto increment
● userFacebookId: Facebook id, in case there is one
● userTwitterId: Twitter id, in case there is one
● userFacebookEmail: Email, given by Facebook
● userTwitterEmail: Email, currently Twitter doesn’t provide any information concerning

user’s email, however, this field has been added for future use
● userEmail: Email, as given by the user
● userEmailUsername: Email username, in case it is given by the user to access

his/her mailbox
● userEmailPassword: Email password, in case it is given by the user to access his/her

mailbox

Table text_history: All crawlable data is saved within this table for future reference

● aa: auto increment for each new text
● idUser: id of the user, from the previous table, for whom this text has been saved
● text: text provided from Facebook, Twitter or mailbox
● utime: Unix timestamp5, of the submission. Unix time (also known as POSIX time or

epoch time) is a system for describing instants in time, defined as the number of
seconds that have elapsed since 00:00:00 Coordinated Universal Time (UTC),
Thursday, 1 January 1970

● lang: language detected or provided for this text

Table events: For every new text provided through Facebook, Twitter or mailbox, an event is
created. This way, we can also step backwards and identify all previous frailty predictions for
each user or all users in general

● ea: auto increment of the event
● idUser: id of the user this event belongs to
● when: Unix timestamp of the event
● status: frailty prediction
● actions: actions taken after this event is triggered. This fields helps to know if an

email has been sent to the user. This way, we always know when an email was sent
or not, and avoid spamming the user

● log: all communication between frontend and backend that was triggered based on
this event. This field is only for debugging purposes in order to help technical and
administrative personnel identify bugs

3.6 User-flow

5 https://en.wikipedia.org/wiki/Unix_time

FRAILSAFE – H2020-PHC–690140 D4.8

- 13 -

Users are requested to visit the LingTester web server in order to authorise access so as for
the latter to be able to read user posts in Facebook and Twitter.

Figure 4: User flow

User (or patient for our case) must navigate through the following steps in order to complete
his or her registration to the FrailSafe LingTester system.

● Step 1, user starts the process
○ User clicks “Sign up”

Figure 5: Step 1

● Step 2, Facebook authorisation (Facebook, 2017)

○ User clicks “Associate with Facebook” or “Skip”. The first option allows the
user to authorise the FrailSafe App to access Facebook posts while the
second option skips this step and redirects the user to the next step.

FRAILSAFE – H2020-PHC–690140 D4.8

- 14 -

Figure 6: Step 2

● Step 3, Twitter authorisation (Twitter, 2017)

○ User clicks “Associate with Twitter” or “Skip”. The first option allows the user
to authorise the FrailSafe App to access Twitter posts while the second option
skips this step and redirects the user to the next step.

Figure 7: Step 3

● Step 4, email submission

○ User submits his email to receive notifications. The email, which can be
different from the one connected to the Facebook account. Also, by saving the
user’s email, the system can also retrieve email submissions through the
mailbox and group all posts from the same user. For future reference,
participant may also provide username and password (The Php Group, 2017)

Figure 8: Step 4

● Step 5, final step

○ User concludes the process

FRAILSAFE – H2020-PHC–690140 D4.8

- 15 -

3.7 Crawler flow

Every time the crawler executes it follows the steps as defined below to identify new
Facebook submissions, new Twitter submissions and new mails received through the
mailbox. The following figure (Figure 9), although simplified, tries as much as possible to
show how the crawler behaves in each case.

At this point, we should stress that the overall behavior of the system and the crawler in
specific is fully parametric and can be centrally defined through global constants, which affect
the following actions:

● The user must have the same prediction multiple times, to assume safe prediction
and avoid fluctuations.

● The user will be notified only after his/her frailty status changes from the previous
time, and only in case the prediction is different than non-frail.

● The user will not be notified again for the same prediction if he/she has already been
notified in the last few days, in order to avoid spamming the participant’s mailbox.
This way, we also overcome false positive in each mailbox spam filter

FRAILSAFE – H2020-PHC–690140 D4.8

- 16 -

Figure 9: Crawler algorithmic procedure

FRAILSAFE – H2020-PHC–690140 D4.8

- 17 -

4. BACKEND

The LingTester online mode uses the backend server to provide frailty predictions based on
the user input that the frontend collects.

4.1 Architecture
The following image (Figure 10) shows how the backend works. The main service waits for
an API call, and if one arrives (currently by the Crawler Application as shown in figure 2), it
tries to make a prediction as fast as possible, in order to accept another one. API call can be
made from ay host within the VPN network. Also, we decided that a watchdog service was
needed to make sure that the prediction service will always be up and running no matter
what may happen, in case of corrupted or buggy input.

Figure 10: Backend architecture

FRAILSAFE – H2020-PHC–690140 D4.8

- 18 -

4.2 Installation

The backend server has been installed on top of the Linux operating system. Linux was the
obvious solution for such a service for numerous reasons. First of all, the initial feature
extraction algorithm was created under Linux (as discussed in D4.10), so keeping the
operating system the same was the natural way to go. As Python can be run under different
operating systems, technical team decided that there was no reason to switch to a different
operating system, as secondly and most importantly, Linux is stable in the long run for web
services.

In order to install the aforementioned backend server from scratch the following steps should
be reproduced. All commands must be run as root user, in order to overcome any permission
hiccups. All commands, while self-explanatory for Linux administrators, are followed by a
small description.

● apt-get install default-jre
○ Installs Java runtime environment

● apt-get install python-pip

○ Installs pip Python library, a helper library to install other Python libraries

● pip install flask
○ Install flask Python library, that runs a web service

● pip install pyenchant

○ Installs enchant Python library, used for spell checking

● pip install httplib2

○ Install httplib2 Python library, used for the feature extraction process, and the
ability of this module to request third party URLs for example third party
translation

● pip install nltk

○ Install Natural Language ToolKit python library, used for feature extraction and
the tf-idf procedure

● pip install pattern

○ Install pattern Python library, used to extract sentiment score

● pip install numpy
● pip install sklearn
● pip install scipy

○ Install various libraries, for feature extraction and manipulation

● apt-get install hunspell-el myspell-fr-fr hunspell-fr

FRAILSAFE – H2020-PHC–690140 D4.8

- 19 -

○ Installs all necessary languages for the spell checker module

4.3 API

An Application Programming Interface has been implemented for easy backend access.
There is no access control at this level, as this service is only accessible within the
VPN(Feilner, 2006). It was decided to avoid adding access control, and let the service
available to any request from within the VPN, for future use, by existing or new modules.

Expected Input

● Method
○ POST

● Format
○ JSON

● Arguments
○ oldText

■ text from previous submissions for specific user
○ newText

■ current submission, on which prediction model must make a decision

Expected Output

● Format
○ JSON

● Result
○ Array

● Contents of Array
○ oldTexttext

■ as given from input, for the caller to verify in case there are encoding
errors

○ newText
■ text as given from input, for the caller to verify in case there are

encoding errors
○ time

■ server time, for debugging purposes
○ prediction

■ result of the prediction model, non-frail, pre-frail or frail. In case
something unexpected has happened, na is returned.

○ command
■ command executed internally through the operating system, for

debugging purposes
○ raw_res

■ raw result from the model prediction executable, for debugging
purposes

FRAILSAFE – H2020-PHC–690140 D4.8

- 20 -

5. TEST RESULTS

5.1 Introduction

As this is the first prototype of the Online LingTester software, it is considered necessary to
obtain the first test results from a series of debugging data. This chapter explains the exact
process that was followed in order to obtain the test results. Clearly, these results are useful
mainly for debugging reasons, so that the program flow can be validated mainly for it’s
correctness. Following the preliminary report, an attempt to run the software on real
participant accounts will be made.

5.2 Participants

In order to run the test results for the prototype software, a number of artificial participant
social media accounts were created. The participants, as has already been said, have no
connection with the real FrailSafe program participants and this is because the software is
still in a very early stage of development. All user accounts are kept private with no social
interaction. At the end of the software testing period, all the accounts including their data will
be removed.

The number of artificial participants is four. Each participant is referred by its user id. For
each user, fake Facebook, Twitter and email account has been given. In order to be able to
validate the obtained test results, the artificial participants have been assigned a frailty status
that will match with the relating artificial data that will be created for them. Also, artificial age
and gender have been assigned to them. The next table summarizes the artificial user
accounts that were made.

USER ID SERVICE USERNAME AGE Gender CLASS

1

facebook user_1@lingtester.frailsafe-project.cloud

70 male NONFRAIL twitter user_1@lingtester.frailsafe-project.cloud

email user_1@lingtester.frailsafe-project.cloud

2 facebook user_2@lingtester.frailsafe-project.cloud 75 female PREFRAIL

FRAILSAFE – H2020-PHC–690140 D4.8

- 21 -

twitter user_2@lingtester.frailsafe-project.cloud

email user_2@lingtester.frailsafe-project.cloud

3

facebook user_3@lingtester.frailsafe-project.cloud

82 male FRAIL twitter user_3@lingtester.frailsafe-project.cloud

email user_3@lingtester.frailsafe-project.cloud

4

facebook user_4@lingtester.frailsafe-project.cloud

74 female N/A twitter user_4@lingtester.frailsafe-project.cloud

email user_4@lingtester.frailsafe-project.cloud

Table 1: List of participants

For each one of the artificial users a text-posts profile will be created according to their
assigned label. In more detail, random text phrases found in the FrailSafe database will be
assigned to them, relating to their frailty status. To be clear, the used phrases have been
recorded and classified during clinical examinations. The phrases simply give a description of
an image or an event. All possible sensitive data that these phrases may include have
already been removed by previous project tasks. For the last user found in the above table
(user id: 4), no class has been assigned as this user will be profiled with random phrases
unrelated to the FrailSafe database. This last user is impossible to be validated as its
assigned class is unknown, thus it was created to generally demonstrate the user
classification by the online LingTester tool using out-of-sample data.

5.3 Classification model

The prediction model(Michalski, 2013) used by the online LingTester tool has already been
presented in deliverable D4.10. An almost identical but slightly tuned model is integrated to
this tool. For this reason no details of its creation will be shown here. A table with the basic
features it uses follows below.

Feature Names Feature Description

Language The crawled posts language

Sex The gender of the participant

Number_of_words The crawled text number of words

Text_entropy The text entropy of the post

FRAILSAFE – H2020-PHC–690140 D4.8

- 22 -

Crawled_text_ENG_sentiment A sentiment score on the text

Prev_text_ENG_sentiment Sentiment score of older text that was crawled

Crawled_text_misspeled The misspellings score calculated on post text

Table 2: List of features of the prediction model

As regards the deployed algorithm, a pre-trained (D4.10) Decision Tree is used with its basic
parameters as follows.

Parameter Name Parameter Value

Binary splits False

Confidence factor 0.25

MinNumObj 2

Reduced Error Pruning False

Unpruned True

Use Laplace False

Table 3: Algorithmic parameters of the prediction model

5.4 Frailty tests & results

As described by the previous chapters, after the registration of a new user to the LingTester
online tool fetches periodically the user’s social activity. Furthermore, it analyzes the user’s
text posts and continuously monitors the user’s mental frailty status. In order to test the
system and its predictive abilities, the set of artificial users was utilized in the following
process.

 LingTester online - Testing process

1. For each artificial user:

a. Pick 3 phrases from the pool of the participants’ phrases according
to its assigned frailty status, based on the dataset obtained from D4.10, as

provided by the clinical groups.
 b. Create a private Facebook post with phrase 1
 c. Create a private Twitter post with phrase 2
 d. Send an email to the online LingTester tool with phrase 3
2. Expect and collect the frailty report from the LingTester tool
3. Repeat steps (1) and (2) for 4 times

FRAILSAFE – H2020-PHC–690140 D4.8

- 23 -

4. Evaluate the assigned user’s class with the reported user’s class.

The size of evaluation data as well as the number of iterations that were selected, were
limited by the amount of nonfrail data that were available. Therefore each artificial user was
assigned twelve text-posts. Nevertheless, the number of posts is considered sufficient for an
in sample test case for an already evaluated predictive model and an evaluation process that
its main focus is to test the good working flow of the online software tool.

In the next table, a number of sample phrases with their respective class are shown for
supervision.

Sample Phrase Class

Το κορίτσι το οποίο βοηθά το αγόρι που είναι ανεβασµένο στο σκαµπό
προκειµένου να φτάσει από το ντουλάπι της κουζίνας τρόφιµα.

NONFRAIL

µια κυρια πλενη πιατα και δυο παιδια κατεβαζου γλυκα Από το τουλαπη PREFRAIL

Προφανώς η µητέρα η οποία πλένει και σκουπίζει τα πιάτα στο νεροχύτη της
κουζίνας.

NONFRAIL

Ένα παιδί ανέβη γιά νά πάρη πισκοττα αλλά το σκαµνάκι έγιρε καί θά πέση
καί ένα άλλο παιδί προσπαθή νά τον γλυτώση.

FRAIL

Κορίτσι αγόρι κάτι πέρνη καί θα γλιστρίσει PREFRAIL

δυό παιδιά
τον ένα πάνω
σκαµπνί κ το
κοριτιστάκι νά
περιµενει νά του
δώσει κάτι
Μιά γυναίκα τα πλένει πιάτα

FRAIL

Παγκόσµια ηµέρα νοσηλευτών σήµερα. Χρόνια πολλά σε όλους τους
νοσηλευτές της χώρας.

N/A

Θα ήθελα να ευχαριστήσω όλους όσους παρευρέθηκαν και µας τίµησαν χτες
βράδυ στην εκδήλωση που διοργάνωσε ο πολιτιστικός και αθλητικός
σύλλογος µας.

N/A

Table 4: Test input

According to the algorithm executed, four predicted classes were obtained for each of the
artificial users. For the first three users of the predicted classes only a minority of two classes
was wrongly predicted giving an overall 83.33% accuracy(Huang, 2006). The last user, as
explained can not be evaluated and was added to display a few out of sample predictions.

FRAILSAFE – H2020-PHC–690140 D4.8

- 24 -

USER ID

PREDICTED CLASS

ACTUAL CLASS

ITERATION
1

ITERATION
2

ITERATION
3

ITERATION
4

1 NONFRAIL NONFRAIL NONFRAIL NONFRAIL NONFRAIL

2 PREFRAIL FRAIL PREFRAIL NONFRAIL PREFRAIL

3 FRAIL FRAIL FRAIL FRAIL FRAIL

4 NONFRAIL PREFRAIL NONFRAIL NONFRAIL N/A

Table 5: Prediction test results

5.5 Discussion of the results

As this is still a preliminary version of the online LingTester software tool, it was imperative to
have a first testing and debugging procedure with artificial users. The results we obtained
were generally in line with the FrailSafe dataset. The overall accuracy was 83.33% with a few
of the predicted classes being wrong. This is an expected outcome as the integrated model
is nearly the same with that of D4.10 but not exactly the same because of the restrictions and
the reduction of information the whole flow of the online software tool introduces(e.g. some of
the model feature values are not always available by the online users).

This testing process stands as a validation that the developed software is generally flawless
and can be further utilized to obtain good results, as good as the integrated model can
produce. It is surely a good starting point for further development and integration of more
models and functionalities like suicidal tendencies detection and user text analysis reports.
On the final version of the online LingTester tool a series of tests will be performed on real
world case scenarios.

6. ETHICS AND SAFETY

Throughout the construction of the online Lingtester tool, legal issues were kept in mind so
as to protect sensitive information. First of all, as described before, SSL is used between the
participant and the frontend server, which ensures that the communication through internet
providers is fully protected against unauthorised persons.

FRAILSAFE – H2020-PHC–690140 D4.8

- 25 -

Furthermore, the user is fully informed and gives consent to provide any necessary access to
third party social networks before signing up. In addition, each provided text is anonymised
by stripping sensitive information before any other step. Moreover, communication between
the frontend and backend servers is available strictly through a secure VPN.

The data obtained, is automatically filtered and all sensitive information is removed as
discussed in chapter 3.4. No data is preserved prior to the anonymization process.

Finally, all emails sent to the predefined mail account are sent manually by each user, so
consent is by default given for the full content, as it is the participants themselves that send
the email towards the LingTester mailbox for further analysis.

7. REFERENCES

● J. Lee and B. Ware. Open source Web development with LAMP: using Linux,

Apache, MySQL, Perl, and PHP. Addison-Wesley Professional, 2003.
● Nemeth, Evi, Garth Snyder, and Trent R. Hein. Linux administration

handbook. Addison-Wesley Professional, 2006.
● I. Ristic, "Internet SSL Survey 2010," Talk at BlackHat 2010. Slides from

https://media.blackhat.com/bh-us-10/presentations/Ristic/BlackHat-USA-2010-
Ristic-Qualys-SSL-Survey-HTTP-Rating-Guide-slides.pdf, 2010, {online; last
retrieved in May 2011}.

● MySQL, A. B. "MySQL." (2001).
● Add Facebook Login to Application or Website,

https://developers.facebook.com/docs/facebook-login, Facebook, 2017
● Authentication & Authorization,

https://dev.twitter.com/oauth/overview/authentication-by-api-family,
Twitter, 2017

● PHP: IMAP Functions - Manual, http://php.net/manual/en/ref.imap.php, The
Php Group, 2017

● Feilner, Markus. OpenVPN: Building and integrating virtual private networks.
Packt Publishing Ltd, 2006.

● Michalski, Ryszard S., Jaime G. Carbonell, and Tom M. Mitchell, eds. Machine
learning: An artificial intelligence approach. Springer Science & Business
Media, 2013.

● Huang, Jin. Performance measures of machine learning. University of
Western Ontario, 2006.

FRAILSAFE – H2020-PHC–690140 D4.8

- 26 -

FRAILSAFE – H2020-PHC–690140 D4.8

- 27 -

8. FILE STRUCTURE

These are the files that accompany this deliverable:

● Folder: frontend
○ Folder: crawler, all needed files for the crawler to run based on cron

■ File: index.php, main crawler initialisation and loop
■ File: lib.php, library file with useful functions
■ File: TwitterAPIExchange.php, library file to retrieve twitters
■ Folder: PHPMailer, external PHPMailer library to send emails

○ Folder: files, secondary files for various uses
○ Folder: images, images for the User Interface (UI)
○ Folder: catalog, main files for the UI

■ Folder: controller, files for DB manipulation
■ Folder: view, files to construct UI based on PHP, JavaScript and

stylesheets
■ Folder: lib, library files for third party modules and services

○ File: config.php, configuration file for site wide parameters
○ File: frailsafe-online.sql, initial SQL script to reconstruct the database
○ File: index.php, main file for UI

● Folder: backend
○ File: frailsafe.model, main model file of the prediction model in binary format
○ File: offline_parser.py, wrapper python file for feature extraction
○ File: predictor-cli.jar, source code of the demo predictor-cli.jar file
○ File: runner.py, web service wrapper of the offline_parser executor
○ File: runner.sh, watchdog wrapper of the main executable file runner.py
○ File: SentiWordNet-1.txt, sentiment analysis word list
○ File: stemming.py, text library file

	

FRAILSAFE – H2020-PHC–690140 D4.8

- 28 -

9. ANNEXES

9.1 SQL initial import script
1. SET	names	utf8;
2. SET	time_zone	=	'+00:00';
3. SET	foreign_key_checks	=	0;
4. SET	sql_mode	=	'NO_AUTO_VALUE_ON_ZERO';
5. DROP	TABLE	IF	EXISTS	`events`;
6. CREATE	TABLE	`events`	(
7. 					`ea`	 	 	 	 	 	 BIGINT(20)	 NOT	 NULL	

auto_increment,
8. 					`iduser`		INT(11)	NOT	NULL,
9. 					`when`				BIGINT(20)	NOT	NULL,
10. 					`status`		VARCHAR(100)	NOT	NULL,
11. 					`actions`	VARCHAR(100)	NOT	NULL,
12. 					`log`					TEXT	NOT	NULL,
13. 					PRIMARY	KEY	(`ea`),
14. 					KEY	 `iduser_when`	 (`iduser`,	

`when`),
15. 					KEY	`iduser_status_when`	(`iduser`,	

`status`,	`when`),
16. 					CONSTRAINT	 `events_ibfk_1`	 FOREIGN	

KEY	(`iduser`)	REFERENCES	`user`	(
17. 					`iduser`)
18.)	engine=innodb	DEFAULT	charset=utf8;
19. 	
20. DROP	TABLE	IF	EXISTS	`text_history`;
21. CREATE	TABLE	`text_history`	(
22. 					`aa`	 	 	 	 	 INT(11)	 NOT	 NULL	

auto_increment,

23. 					`iduser`	INT(11)	NOT	NULL,
24. 					`text`			TEXT	NOT	NULL,
25. 					`utime`		BIGINT(20)	NOT	NULL,
26. 					`lang`			VARCHAR(100)	NOT	NULL,
27. 					PRIMARY	KEY	(`aa`),
28. 					KEY	 `iduser_when`	 (`iduser`,	

`utime`),
29. 					CONSTRAINT	 `text_history_ibfk_1`	

FOREIGN	KEY	(`iduser`)	REFERENCES	`user`	
(

30. 					`iduser`)
31.)	engine=innodb	DEFAULT	charset=utf8;
32. 	
33. DROP	TABLE	IF	EXISTS	`user`;
34. CREATE	TABLE	`user`	(
35. 					`iduser`	 	 	 	 	 	 	 	 	 	 	 	 INT(11)	 NOT	

NULL	auto_increment,
36. 					`userfacebookid`				TEXT,
37. 					`usertwitterid`					TEXT,
38. 					`userfacebookemail`	TEXT,
39. 					`usertwitteremail`		TEXT,
40. 					`useremail`									TEXT	CHARACTER	

SET	utf16,
41. 					`useremailusername`	TEXT,
42. 					`useremailpassword`	TEXT,
43. 					PRIMARY	KEY	(`iduser`)
44.)	 engine=innodb	 DEFAULT	 charset=utf8;

9.2 Frontend

9.2.a Requests Router

File: catalog/view/main.php
1. <!DOCTYPE	html>

2. <html>

3. 				<head>

4. 								<meta	charset="utf-8">

5. 								<meta	 http-equiv="X-UA-

Compatible"	content="IE=edge">

6. 								<meta	 name="viewport"	

content="width=device-width,	 initial-

scale=1">

7. 							

8. 								<link	 href="image/favicon.ico"	

rel="shortcut	icon"	/>

9. 								<title>FrailSafe	 Online	

System</title>

10. 							

11. 								<!--css-->						

12. 								<link	
href="catalog/lib/bootstrap/css/bootstra

p.min.css"	rel="stylesheet"	/>

13. 								<link	
href="catalog/view/stylesheet/jumbotron-

narrow.css"	rel="stylesheet"	/>

14. 								<link	
href="catalog/view/stylesheet/index.css"	

rel="stylesheet"	/>

15. 							

16. 								<!--js-->

FRAILSAFE – H2020-PHC–690140 D4.8

- 29 -

17. 								<script	 type="text/javascript"	

src="catalog/lib/jquery/js/jquery-

3.2.0.min.js"></script>

18. 								<script	 type="text/javascript"	

src="catalog/lib/bootstrap/js/bootstrap.

min.js"></script>

19. 								<script	 type="text/javascript"	

src="catalog/view/js/index.js"></script>				

20. 							

21. 				</head>

22. 				<body>

23. 															

24. 								<div	class="container">

25. 												<?php

26. 											include_once	
'catalog/view/code/header.php';

27. 											?>

28. 	

29. 												<?php

30. 											if(isset($_REQUEST['home']))

31. 															include_once	
'catalog/view/code/home.php';

32. 											
elseif(isset($_REQUEST['step1']))

33. 															include_once	
'catalog/view/code/step1.php';

34. 											
elseif(isset($_REQUEST['step2']))

35. 															include_once	
'catalog/view/code/step2.php';

36. 											
elseif(isset($_REQUEST['step3']))

37. 															include_once	
'catalog/view/code/step3.php';

38. 											
elseif(isset($_REQUEST['success']))

39. 															include_once	
'catalog/view/code/success.php';

40. 											
elseif(isset($_REQUEST['about']))

41. 															include_once	
'catalog/view/code/about.php';

42. 											
elseif(isset($_REQUEST['contact']))

43. 															include_once	
'catalog/view/code/contact.php';

44. 											else

45. 															include_once	
'catalog/view/code/home.php';

46. 											?>

47. 											

48. 	

49. 												<?php

50. 											include_once	
'catalog/view/code/footer.php';

51. 											?>

52. 	

53. 								</div>

54. 								<!--	/container	-->

55. 																							

56. 				</body>

57. </html>

9.2.b Registration

File: catalog/lib/hybridauth/frailsafe/profile.php
1. <?php

2. 				session_start();

3. 				//	config	and	whatnot

4. 				$config	 =	 dirname(__FILE__)	 .	

'/../hybridauth/config.php';

5. 				require_once(

"../hybridauth/Hybrid/Auth.php");

6. 	

7. 				$user_data	=	NULL;

8. 				$returnUrl	 =	

urldecode($_GET['returnurl']);

9. 				//echo	$_GET['returnurl'];

10. 				//return;

11. 	

12. 				//	try	to	get	the	user	profile	from	
an	authenticated	provider

13. 				try{

FRAILSAFE – H2020-PHC–690140 D4.8

- 30 -

14. 								$hybridauth	 =	 new	 Hybrid_Auth(

$config);

15. 	

16. 								//	selected	provider	name

17. 								$provider	 =	 @	 trim(strip_tags(
$_GET["provider"]));

18. 	

19. 								//	 check	 if	 the	 user	 is	

currently	 connected	 to	 the	 selected	

provider

20. 								if(!	 	 $hybridauth-

>isConnectedWith($provider)){

21. 												//	 redirect	 him	 back	 to	

login	page

22. 												header("Location:	

login.php?error=Your	 are	 not	 connected	

to	 $provider	 or	 your	 session	 has	

expired");

23. 								}

24. 	

25. 								//	 call	 back	 the	 requested	

provider	 adapter	 instance	 (no	 need	 to	

use	authenticate()	as	we	already	did	on	

login	page)

26. 								$adapter	 =	 $hybridauth-

>getAdapter($provider);

27. 	

28. 								//	grab	the	user	profile

29. 								$user_data	 =	 $adapter-

>getUserProfile();

30. 								//session_destroy();

31. 								//session_start();

32. 								
include_once('../../../../config.php');

33. 								
include_once('../../../../catalog/contro

ller/dbOperator.php');

34. 								$dbOp	 =	 new	

dbOperator($dbHost,$dbUsername,$dbPasswo

rd,$dbName);

35. 	

36. 								$user	 =	 $dbOp->query("Select	 *	

from	 user	 where	

user".$provider."Email='".$user_data-

>email."'	LIMIT	1");

37. 								//print_r($user);

38. 								if(!$user->num_rows){

39. 												echo	'not	registered';

40. 												$id	 =	

register($dbOp,$user_data,$provider);				

41. 								}else

42. 												//$id	=	$user[0]['idUser'];

43. 												$id	=	$user->row['idUser'];

44. 																							

45. 								if(strpos($returnUrl,	"step1"))

46. 												$returnUrl	 =	

str_replace("step1",	 "step2",	

$returnUrl);

47. 								elseif(strpos($returnUrl,	
"step2"))

48. 												$returnUrl	 =	

str_replace("step2",	 "step3",	

$returnUrl);

49. 											

50. 								if(!isset($_SESSION['idUser'])){

51. 												$_SESSION['idUser']	=	$id;

52. 											

53. 												//$urlParameter	='';

54. 												//header("Location:	
".((strpos($returnUrl,'?'))?urldecode($r

eturnUrl).'&'.$urlParameter:urldecode($r

eturnUrl).'?'.$urlParameter));								

55. 												header("Location:	
".urldecode($returnUrl));

56. 								}else

57. 												header("Location:	
".urldecode($returnUrl));

58. 							

59. 				}

60. 				catch(Exception	$e){

61. 								//	 In	 case	 we	 have	 errors	 6	 or	
7,	 then	 we	 have	 to	 use	

Hybrid_Provider_Adapter::logout()	to

62. 								//	 let	 hybridauth	 forget	 all	

about	 the	 user	 so	 we	 can	 try	 to	

authenticate	again.

63. 	

64. 								//	Display	the	recived	error,

65. 								//	to	know	more	please	refer	to	
Exceptions	 handling	 section	 on	 the	

userguide

66. 								switch($e->getCode()){

67. 												case	 0	 :	 echo	 "Unspecified	

error.";	break;

FRAILSAFE – H2020-PHC–690140 D4.8

- 31 -

68. 												case	 1	 :	 echo	 "Hybriauth	

configuration	error.";	break;

69. 												case	2	:	echo	"Provider	not	
properly	configured.";	break;

70. 												case	 3	 :	 echo	 "Unknown	 or	

disabled	provider.";	break;

71. 												case	 4	 :	 echo	 "Missing	

provider	 application	 credentials.";	

break;

72. 												case	 5	 :	 echo	

"Authentication	failed.	"

73. 																						.	 "The	 user	 has	

canceled	 the	 authentication	 or	 the	

provider	refused	the	connection.";

74. 												case	6	:	echo	"User	profile	
request	failed.	Most	likely	the	user	is	

not	connected	"

75. 																						.	"to	the	provider	
and	he	should	to	authenticate	again.";

76. 																			$adapter->logout();

77. 																			break;

78. 												case	 7	 :	 echo	 "User	 not	

connected	to	the	provider.";

79. 																			$adapter->logout();

80. 																			break;

81. 								}

82. 	

83. 								echo	 "

Original	

error	message:	"	.	$e->getMessage();

84. 	

85. 								echo	 "<hr	 /><h3>Trace</h3>	

<pre>"	 .	 $e->getTraceAsString()	 .	

"</pre>";

86. 				}

87. 			

88. 			

89. 				function	
register($dbOperator,$userData,$provider

=''){

90. 								$dbOp	=$dbOperator;

91. 								$user_data	=	$userData;

92. 							

93. 								if(!isset($_SESSION['idUser'])){

94. 												if($dbOp->query("INSERT	 INTO	
`user`(`idUser`,	 `user".$provider."Id`,	

`user".$provider."Email`)	 VALUES	

('','".$user_data-

>identifier."','".$user_data-

>email."')"))

95. 																$id	 =	 $dbOp-

>getLastId();

96. 								
}elseif(!empty($_SESSION['idUser'])){

97. 												$dbOp->query("UPDATE	 user	

SET	 `user".$provider."Id`='".$user_data-

>identifier."',	

`user".$provider."Email`='".$user_data-

>email."'	 WHERE	

idUser=".$_SESSION['idUser']);

98. 												return	$_SESSION['idUser'];

99. 								}

100. 								return	$id;

101. 				}

102. ?>

	

9.3 Backend

9.3.a Crawler main loop

File: crawler/index.php
1. <?php
2. 	
3. include_once	'../config.php';

4. $auth_config	 =	 include_once	
'../catalog/lib/hybridauth/hybridauth/co
nfig.php';

FRAILSAFE – H2020-PHC–690140 D4.8

- 32 -

5. include_once	
'../catalog/controller/dbOperator.php';

6. include_once	 dirname(__FILE__)	 .	
'/TwitterAPIExchange.php';

7. include_once	 dirname(__FILE__)	 .	
'/lib.php';

8. include_once	 dirname(__FILE__)	 .	
'/PHPMailer/PHPMailerAutoload.php';

9. 	
10. //	 Within	 this	 window,	 text	 will	 be	

considered	present
11. define('CURRENT_TEXT_WINDOW',	 60	 *	 60	 *	

24);
12. 	
13. //	 Minimm	 same	 predictions	 in	 a	 raw	 to	

assume	final
14. define('SAME_PREDICTIONS_IN_A_RAW',	5);
15. 	
16. //	 If	 so	 much	 time	 has	 passed,	 let's	

send	another	email	to	the	patient
17. define('NOTIFY_AGAIN_AFTER_DAYS',	30);
18. define('NOTIFY_WITH_TAGS',	

array('frail',	'prefrail'));
19. 	
20. error_reporting(E_ALL);
21. ini_set('display_errors',	1);
22. 	
23. //Create	a	new	PHPMailer	instance
24. $mail	=	new	PHPMailer;
25. 	
26. //Tell	PHPMailer	to	use	SMTP
27. $mail->isSMTP();
28. 	
29. //Enable	SMTP	debugging
30. //	0	=	off	(for	production	use)
31. //	1	=	client	messages
32. //	2	=	client	and	server	messages
33. //	$mail->SMTPDebug	=	2;
34. 	
35. //Ask	for	HTML-friendly	debug	output
36. $mail->Debugoutput	=	'html';
37. 	
38. //Set	the	hostname	of	the	mail	server
39. $mail->Host	=	'smtp.gmail.com';
40. //	use
41. //	 $mail->Host	 =	

gethostbyname('smtp.gmail.com');
42. //	if	your	network	does	not	support	SMTP	

over	IPv6
43. 	
44. //Set	 the	 SMTP	 port	 number	 -	 587	 for	

authenticated	 TLS,	 a.k.a.	 RFC4409	 SMTP	
submission

45. $mail->Port	=	587;
46. 	
47. //Set	the	encryption	system	to	use	-	ssl	

(deprecated)	or	tls
48. $mail->SMTPSecure	=	'tls';
49. 	
50. //Whether	to	use	SMTP	authentication

51. $mail->SMTPAuth	=	true;
52. 	
53. //Username	 to	 use	 for	 SMTP	

authentication	-	use	full	email	address	
for	gmail

54. $mail->Username	 =	
$auth_config['providers']['Google']['key
s']['username'];

55. 	
56. //Password	 to	 use	 for	 SMTP	

authentication
57. $mail->Password	 =	

$auth_config['providers']['Google']['key
s']['password'];

58. 	
59. //Set	who	the	message	is	to	be	sent	from
60. $mail-

>setFrom($auth_config['providers']['Goog
le']['keys']['username'],	 'FrailSafe	
Lingtester');

61. 	
62. 	
63. $dbOp	 =	 new	 dbOperator($dbHost,	

$dbUsername,	$dbPassword,	$dbName);
64. 	
65. //	 Go	 through	 all	 users	 and	 fetch	 new	

texts
66. //	 ..	 and	 for	 new	 texts,	 get	 a	 new	

prediction
67. $users_with_new_texts	=	array();
68. 	
69. //	Facebook
70. //	Create	an	access	token	using	the	APP	

ID	and	APP	Secret.
71. $accessToken	 =	

$auth_config['providers']['Facebook']['k
eys']['id']	 .	 '|'	 .	
$auth_config['providers']['Facebook']['k
eys']['secret'];

72. 	
73. //	Twitter
74. $twitterURL	 =	

'https://api.twitter.com/1.1/statuses/us
er_timeline.json';

75. $twitterSettings	=	array(
76. 		'oauth_access_token'	 =>	

$auth_config['providers']['Twitter']['ke
ys']['access_token'],

77. 		'oauth_access_token_secret'	 =>	
$auth_config['providers']['Twitter']['ke
ys']['access_token_secret'],

78. 		'consumer_key'	 =>	
$auth_config['providers']['Twitter']['ke
ys']['key'],

79. 		'consumer_secret'	 =>	
$auth_config['providers']['Twitter']['ke
ys']['secret'],

80.);
81. $twitter	 =	 new	

TwitterAPIExchange($twitterSettings);
82. 	

FRAILSAFE – H2020-PHC–690140 D4.8

- 33 -

83. $all_users	=	$dbOp->query('Select	*	from	
user;');

84. print	'<pre>';
85. //	print_r($all_users);
86. 	
87. foreach	($all_users->rows	as	$user)	{
88. 	
89. 		//	Facebook
90. 		if	 ($user['userFacebookId']	 &&	

$user['userFacebookId']	!=	'')	{
91. 				$userFacebookId	 =	

$user['userFacebookId'];
92. 	
93. 				//	Tie	it	all	together	to	construct	

the	URL
94. 				$url	 =	

sprintf('https://graph.facebook.com/%s/p
osts?access_token=%s',	 $userFacebookId,	
$accessToken);

95. 	
96. 				//	Make	the	API	call
97. 				$result	=	file_get_contents($url);
98. 	
99. 				if	($result)	{
100. 						//	Decode	the	JSON	result.
101. 						$decoded	 =	 json_decode($result,	

true);
102. 	
103. 						if	($decoded)	{
104. 								foreach	 ($decoded['data']	 as	

$value)	{
105. 										//	"Useless"	posts
106. 										if	

(!isset($value['message']))
107. 												continue;
108. 	
109. 										$utime	 =	

strtotime($value['created_time']);
110. 										$existing_post	 =	 $dbOp-

>query('SELECT	*	FROM	text_history	WHERE	
idUser	 =	 "'	 .	 $user['idUser']	 .	 '"	 AND	
utime	=	"'	.	$utime	.	'"	LIMIT	1;');

111. 	
112. 										if	 ($existing_post	 &&	

$existing_post->num_rows	>	0)
113. 												continue;
114. 	
115. 										//	Keep	it	handy
116. 										$users_with_new_texts[

$user['idUser']]	=	1;
117. 	
118. 										$text	=	$value['message'];
119. 										$text	=	$dbOp->escape($text);
120. 										$dbOp->query(sprintf('INSERT	

INTO	 text_history	 (`idUser`,	 `text`,	
`utime`,	 `lang`)	 VALUES	 (%d,	 "%s",	 %d,	
"");',	$user['idUser'],	$text,	$utime));

121. 								}	 //	 foreach	 ($decoded['data']	
as	$value)

122. 						}	//	if	($decoded)

123. 				}	//	if	($result)
124. 		}	 //	 if	 ($user['userFacebookId']	 &&	

$user['userFacebookId']	!=	'')
125. 	
126. 		//	Twitter
127. 		if	 ($user['userTwitterId']	 &&	

$user['userTwitterId']	!=	'')	{
128. 				$userTwitterId	 =	

$user['userTwitterId'];
129. 	
130. 				$ret	 =	 $twitter-

>setGetfield('?user_id='	 .	
$userTwitterId)

131. 								->buildOauth($twitterURL,	
'GET')

132. 								->performRequest();
133. 	
134. 				if	($ret	&&	is_array($ret))	{
135. 						foreach	($ret	as	$tweet)	{
136. 								$utime	 =	 strtotime($tweet-

>created_at);
137. 								$lang	=	$tweet->lang;
138. 								$text	=	$tweet->text;
139. 								$existing_post	 =	 $dbOp-

>query('SELECT	*	FROM	text_history	WHERE	
idUser	 =	 "'	 .	 $user['idUser']	 .	 '"	 AND	
utime	=	"'	.	$utime	.	'"	LIMIT	1;');

140. 	
141. 								if	 ($existing_post	 &&	

$existing_post->num_rows	>	0)
142. 										continue;
143. 	
144. 								//	Keep	it	handy
145. 								$users_with_new_texts[

$user['idUser']]	=	1;
146. 	
147. 								$text	=	$dbOp->escape($text);
148. 								$dbOp->query(sprintf('INSERT	

INTO	 text_history	 (`idUser`,	 `text`,	
`utime`,	 `lang`)	 VALUES	 (%d,	 "%s",	 %d,	
"%s");',	$user['idUser'],	$text,	$utime,	
$lang));

149. 						}	//	foreach	($ret	as	$tweet)
150. 				}	//	if	($ret	&&	is_array($ret))
151. 		}	 //	 if	 ($user['userTwitterId']	 &&	

$user['userTwitterId']	!=	'')
152. }	//	foreach	($all_users	as	$user)
153. 	
154. $inbox	=	imap_open(
155. 		

$auth_config['providers']['Google']['con
nection'],

156. 		
$auth_config['providers']['Google']['key
s']['username'],

157. 		
$auth_config['providers']['Google']['key
s']['password']

158.);
159. 	

FRAILSAFE – H2020-PHC–690140 D4.8

- 34 -

160. if	($inbox)	{
161. 		$emails	 =	 imap_search($inbox,	

'UNSEEN');
162. 		//	 $emails	 =	 imap_search($inbox,	

'ALL');
163. 	
164. 		//	 if	 emails	 are	 returned,	 cycle	

through	each..
165. 		if	($emails)	{
166. 			
167. 				//	for	every	email...
168. 				foreach($emails	as	$email_number)	{
169. 						//	 Get	 information	 specific	 to	

this	email
170. 						$overview	 =	

imap_fetch_overview($inbox,	
$email_number,	0);

171. 						$message	=	imap_fetchbody($inbox,	
$email_number,	'1');

172. 					
173. 						$from	=	$overview[0]->from;
174. 						$utime	 =	 strtotime($overview[0]-

>date);
175. 	
176. 						//	 Iparxei	 kaneis	 stin	 vasi	 mas	

me	afto	to	email?
177. 						$matches	=	array();
178. 						if	

(preg_match('/(.*?)\\<(.*?)\\>/',	 $from,	
$matches))

179. 								$from	=	$matches['2'];
180. 	
181. 						$from	=	$dbOp->escape($from);
182. 						$select	 =	 sprintf('SELECT	 *	 from	

user	 WHERE	 userFacebookEmail	 =	 "%s"	 OR	
userTwitterEmail	 =	 "%s"	 OR	 userEmail	 =	
"%s"	LIMIT	1;',	$from,	$from,	$from);

183. 						$known_user	 =	 $dbOp-
>query($select);

184. 	
185. 						//	No	known	user,
186. 						if	 (!$known_user	 ||	 $known_user-

>num_rows	<=	0)	{
187. 								//	TODO
188. 								//	 ..	 send	 a	 reply	 that	 user	

must	visit	the	page
189. 								//	 ..	

https://lingtester.frailsafe-
project.cloud/

190. 								$mail->ClearAddresses();
191. 								$mail->addAddress($from);
192. 								$mail->Subject	 =	 'FrailSafe:	

Lingtester	prediction';
193. 								$mail->Body	 =	 'You	 are	 not	 in	

out	 system.	 Please	 visit	
https://lingtester.frailsafe-
project.cloud/	and	follow	the	steps.';

194. 								$mail->send();
195. 								continue;
196. 						}

197. 	
198. 						$user	=	$known_user->row;
199. 	
200. 						//	 This	 is	 reduntant,	 as	 mails	

from	POP	are	always	returned	once
201. 						$existing_post	 =	 $dbOp-

>query('SELECT	*	FROM	text_history	WHERE	
idUser	 =	 "'	 .	 $user['idUser']	 .	 '"	 AND	
utime	=	"'	.	$utime	.	'"	LIMIT	1;');

202. 						if	 ($existing_post	 &&	
$existing_post->num_rows	>	0)

203. 								continue;
204. 	
205. 						//	Keep	it	handy
206. 						$users_with_new_texts[

$user['idUser']]	=	1;
207. 	
208. 						$message	 =	 $dbOp-

>escape($message);
209. 						$dbOp->query(sprintf('INSERT	INTO	

text_history	(`idUser`,	`text`,	`utime`,	
`lang`)	 VALUES	 (%d,	 "%s",	 %d,	 "%s");',	
$user['idUser'],	$message,	$utime,	''));

210. 				}	 //	 foreach($emails	 as	
$email_number)

211. 		}	//	if	($emails)
212. 	
213. 		//	close	the	connection
214. 		imap_close($inbox);
215. }	//	if	($inbox)
216. 	
217. if	(count($users_with_new_texts)	<=	0)
218. 		return;
219. 	
220. foreach	 ($users_with_new_texts	 as	 $key	

=>	$value)	{
221. 		//	This	user	has	some	new	text
222. 		//	..	take	all	availiable	and	fetch	a	

prediction
223. 		$user_texts	 =	 $dbOp->query('SELECT	 *	

FROM	 text_history	 WHERE	 idUser	 =	 "'	 .	
$key	.	'";');

224. 		$new_texts	=	'';
225. 		$old_texts	=	'';
226. 		//	strip_tags	is	used	to	remove	html	

tags
227. 		//	..	which	can	be	found	in	posts	and	

html	mails
228. 		foreach	($user_texts->rows	as	$value)	

{
229. 				if	 ($value['utime']	 >=	 time()	 -	

CURRENT_TEXT_WINDOW)
230. 						$new_texts	 .=	 '	 '	 .	

strip_tags($value['text']);
231. 				else
232. 						$old_texts	 .=	 '	 '	 .	

strip_tags($value['text']);
233. 		}
234. 	

FRAILSAFE – H2020-PHC–690140 D4.8

- 35 -

235. 		//	 All	 texts	 considered,	 get	 a	
prediction

236. 		//	..	save	it	in	the	database
237. 		$ret	 =	 getPrediction($old_texts,	

$new_texts,	$backend);
238. 		//	Backend	issue?
239. 		if	(!$ret)
240. 				continue;
241. 	
242. 		$data	=	json_decode($ret);
243. 		//	Backend	issue?
244. 		if	 (!$data	 ||	 !isset($data-

>prediction))
245. 				continue;
246. 	
247. 		//	Model	issue?
248. 		if	 (!in_array($data->prediction,	

array('frail',	'prefrail',	'nonfrail')))
249. 				continue;
250. 	
251. 		$status	=	$data->prediction;
252. 		$utime	=	time();
253. 		$log	 =	 $dbOp-

>escape(serialize($data));
254. 		$sql	 =	 sprintf('INSERT	 INTO	 events	

(`idUser`,	 `when`,	 `status`,	 `log`)	
VALUES	 (%d,	 %d,	 "%s",	 "%s");',	 $key,	
$utime,	$status,	$log);

255. 		$dbOp->query($sql);
256. 	
257. 		//	In	order	to	send	a	message
258. 		//	 ..	 we	 must	 have	 a	 different	

prediction	than	before
259. 		//	 ..	 we	 must	 not	 have	 sent	 already	

an	email	to	avoid	spamming
260. 		//	 ..	 where	 a	 new	 prediction	 means	

SAME_PREDICTIONS_IN_A_RAW	all	the	time
261. 		$new_prediction	=	'';
262. 		$how_many_times	=	0;
263. 		$sql	 =	 sprintf('SELECT	 `ea`,	 `when`,	

`actions`,	 `status`	 FROM	 `events`	 WHERE	
`idUser`	 =	 %d	 ORDER	 BY	 `when`	 DESC;',	
$key);

264. 		$prediction_history	 =	 $dbOp-
>query($sql);

265. 		foreach	($prediction_history->rows	as	
$value)	{

266. 				if	 ($how_many_times	 ==	 0	 ||	
$new_prediction	==	$value['status'])	{

267. 						$how_many_times	+=	1;
268. 						$new_prediction	 =	

$value['status'];
269. 				}	 //	 if	 ($how_many_times	 ==	 0	 ||	

$new_prediction	==	$value['status'])
270. 		}	 //	 foreach	 ($prediction_history-

>rows	as	$value)
271. 	
272. 		//	 This	 doesn't	 qualify	 for	

notification	yet

273. 		if	 ($how_many_times	 <	
SAME_PREDICTIONS_IN_A_RAW	 ||	
$new_prediction	==	'')

274. 				continue;
275. 	
276. 		//	No	need	to	notify
277. 		if	 (!in_array($new_prediction,	

NOTIFY_WITH_TAGS))
278. 				continue;
279. 	
280. 		//	We	must	notify	patient
281. 		//	..	but	have	we	already	yet?
282. 		$last_email_sent	=	Null;
283. 		$with_prediction	=	'';
284. 		foreach	($prediction_history->rows	as	

$value)	{
285. 				if	 (stripos($value['actions'],	

'send-email')	!==	False)	{
286. 						$last_email_sent	 =	

$value['when'];
287. 						$with_prediction	 =	

$value['status'];
288. 	
289. 						//	We	are	in	descending	order
290. 						//	..	nothing	to	check	more
291. 						break;
292. 				}
293. 		}	 //	 foreach	 ($prediction_history-

>rows	as	$value)
294. 	
295. 		//	Patient	has	already	been	notified	

within	a	considerable	amount	of	time
296. 		if	 ($with_prediction	 ==	

$new_prediction	 &&	 time()	 -	
intval($last_email_sent)	 <	
NOTIFY_AGAIN_AFTER_DAYS	*	60	*	60	*	24)

297. 				continue;
298. 	
299. 		//	 At	 this	 point	 we	 must	 definitely	

send	an	email
300. 		$user_row	 =	 $dbOp->query('SELECT	 *	

FROM	 `user`	 WHERE	 idUser	 =	 "'	 .	 $key	 .	
'";');

301. 	
302. 		$mail->ClearAddresses();
303. 		if	 (isset($user_row-

>row['userFacebookEmail']))
304. 				$mail->addAddress($user_row-

>row['userFacebookEmail']);
305. 		if	 (isset($user_row-

>row['userTwitterEmail']))
306. 				$mail->addAddress($user_row-

>row['userTwitterEmail']);
307. 		if	 (isset($user_row-

>row['userEmail']))
308. 				$mail->addAddress($user_row-

>row['userEmail']);
309. 	
310. 		$mail->Subject	 =	 'FrailSafe:	

Lingtester	prediction';

FRAILSAFE – H2020-PHC–690140 D4.8

- 36 -

311. 		$mail->Body	 =	 'Your	 current	
prediction	is	'	.	$new_prediction;

312. 		if($mail->send())	{
313. 				//	 Update	 database	 to	 avoid	

spamming	in	the	future
314. 				$actions	 =	 explode(',',	

$prediction_history->row['actions']);
315. 				$actions[]	=	'send-email';
316. 				$ea	 =	 $prediction_history-

>row['ea'];

317. 				$sql	=	sprintf('UPDATE	`events`	SET	
`actions`	 =	 "%s"	 WHERE	 `ea`	 =	 %d;',	
implode(',',	$actions),	$ea);

318. 				$update_system	 =	 $dbOp-
>query($sql);

319. 		}
320. 	
321. 		print_r($prediction_history);
322. }	 //	 foreach	 ($users_with_new_texts	 as	

$key	 =>	 $value)

9.3.b Text Parser

1. #	-*-	coding:	utf-8	-*-
2. 	
3. from	flask	import	Flask
4. from	flask	import	request
5. 	
6. import	os
7. import	offline_parser
8. import	json
9. import	time
10. 	
11. app	=	Flask(__name__)
12. 	
13. def	identifyLang(Text):
14. 				if	Text.find(u'α')	>	0:
15. 						return	'greek'
16. 	
17. 				return	'english'
18. 	
19. def	 create_test_arff(oldText,	 newText,	

relation	=	'frailsafe_111'):
20. 				"""Create	 arff	 for	 WEKA	 with	 all	

features	availiable
21. 			"""
22. 				out	=	[]
23. 				out.append('@RELATION	 %s'	 %	

relation)
24. 				out.append('')
25. 			
26. 				basic_tags	=	[]
27. 				basic_tags.append('transcript')
28. 				basic_tags.append('tag')
29. 				basic_tags.append('sex')
30. 	
31. 				for	tag	in	basic_tags:
32. 								valid	 =	

offline_parser.verify_tags['-'	+	tag]
33. 								if	tag	==	'tag':
34. 												tag	=	'class'
35. 												#	 valid	 =	 ('nonfrail',	

'prefrail',	'frail')
36. 												valid	 =	 ('prefrail',	

'frail')

37. 								out.append('@ATTRIBUTE	 %s	 {%s}'	
%	(tag,	','.join(valid)))

38. 			
39. 				out.append('@ATTRIBUTE	 %s	 %s'	 %	

(offline_parser.get_feature_word_count('
',	 'title'),		
offline_parser.get_feature_word_count(''
,	'type')))

40. 				out.append('@ATTRIBUTE	 %s	 %s'	 %	
(offline_parser.get_feature_text_shannon
_entropy('',	 'title'),		
offline_parser.get_feature_text_shannon_
entropy('',	'type')))

41. 			
42. 				for	 tag	 in	 ['-desc_event_ENG',	 '-

prev_text_ENG']:
43. 								out.append('@ATTRIBUTE	 %s	 %s'	 %	

(tag.lstrip('-')	 +	 '_sentiment',	
'real'))

44. 	
45. 				for	 tag	 in	 ['-desc_image',	 '-

desc_event']:
46. 								out.append('@ATTRIBUTE	 %s	 %s'	 %	

(tag.lstrip('-')	 +	 '_misspelled',	
'real'))

47. 	
48. 				texts	=	[]
49. 				text_POS	=	[]
50. 			
51. 				out.append('')
52. 				out.append('@DATA')
53. 				out.append('')
54. 			
55. 				filename	=	'in.arff'
56. 				f	=	open(filename,	'w')
57. 				

f.write("\n".join(out).encode('utf8'))				
58. 				f.write("\n")
59. 	
60. 				clang	 =	 identifyLang(oldText	 +	

newText)
61. 			
62. 				#	To	absorb	all	Greek	variations												

FRAILSAFE – H2020-PHC–690140 D4.8

- 37 -

63. 				if	clang.startswith('greek'):
64. 								clang	=	'greek'
65. 											
66. 				row	=	[]
67. 				#	transcript?
68. 				row.append('no')
69. 				#	sex?
70. 				row.append('?')
71. 				#	tag?
72. 				row.append('?')
73. 	
74. 				

row.append(str(offline_parser.get_featur
e_word_count(oldText	 +	 newText,	 lang	 =	
clang)))

75. 				
row.append(str(offline_parser.get_featur
e_text_shannon_entropy(oldText	 +	
newText,	lang	=	clang)))

76. 	
77. 				#	 Sentiment	 score	 is	 based	 in	 the	

english	translation
78. 				for	 tag	 in	 ['-desc_event_ENG',	 '-

prev_text_ENG']:
79. 								text	=	''
80. 								if	tag.find('event')	>	0:
81. 										text	=	newText
82. 								elif	tag.find('prev')	>	0:
83. 										text	=	oldText
84. 	
85. 								#	Get	sentiment	score
86. 								eng_text	 =	

offline_parser.get_translated_data(text,	
clang)

87. 								ret	 =	
offline_parser.get_feature_sentiment_sco
re(eng_text)

88. 	
89. 								row.append(str(ret))
90. 	
91. 				for	 tag	 in	 ['-desc_image',	 '-

desc_event']:
92. 								text	=	''
93. 								if	tag.find('event')	>	0:
94. 										text	=	newText
95. 								elif	tag.find('prev')	>	0:
96. 										text	=	oldText
97. 	

98. 								ret	 =	
offline_parser.get_feature_mispelling_sc
ore(text,	lang	=	clang)

99. 								row.append(str(ret))
100. 	
101. 				

f.write(','.join(row).encode('utf8'))
102. 				f.write("\n")
103. 			
104. 				f.close()
105. 	
106. @app.route("/",	methods=['POST'])
107. def	predict():
108. 				oldText	=	request.form['oldText']
109. 				newText	=	request.form['newText']
110. 	
111. 				create_test_arff(oldText,	newText)
112. 	
113. 				temp_file_out	 =	 "%d.txt"	 %	

time.time()
114. 				command	 =	 "java	 -jar	 predictor-

cli.jar	>	%s	2>&1"	%	temp_file_out
115. 				os.system(command)
116. 				res	=	''
117. 				f	=	open(temp_file_out)
118. 				res	=	"\n".join(f.readlines())
119. 				f.close()
120. 	
121. 				os.unlink(temp_file_out)
122. 	
123. 				ret	=	{}
124. 				ret['oldText']	=	oldText
125. 				ret['newText']	=	newText
126. 				ret['time']	=	temp_file_out
127. 				ret['prediction']	=	'na'
128. 				ret['command']	=	command
129. 				ret['raw_res']	=	res
130. 	
131. 				if	 res.find('Prediction	 for	

instance:	0	is:')	>=	0:
132. 						ret['prediction']	 =	

res.replace('Prediction	 for	 instance:	 0	
is:',	'').strip().lower()

133. 	
134. 				return	json.dumps(ret)
135. 	
136. if	__name__	==	"__main__":
137. 				app.run(host	 =	 '0.0.0.0',)

9.4 Predictor

File: predictor/predictor-cli.java

1. package	predictor;		
2. 	
3. import	weka.classifiers.Classifier;		

FRAILSAFE – H2020-PHC–690140 D4.8

- 38 -

4. import	weka.core.Instances;		
5. import	weka.core.converters.ConverterUtils.DataSource;		
6. 	
7. public	class	PredictorCLI	{		
8. 	
9. 				public	static	void	main(String[]	args)	{		
10. 																			
11. 								Classifier	cls;		
12. 								try	{		
13. 												//load	model		
14. 												cls	=	(Classifier)	weka.core.SerializationHelper.read("frailsafe.model");		
15. 													
16. 													
17. 												DataSource	source;		
18. 												try	{		
19. 																//load	test	data		
20. 																source	=	new	DataSource("in.arff");		
21. 																Instances	data	=	source.getDataSet();		
22. 																if	(data.classIndex()	==	-1)		
23. 																			data.setClassIndex(1);	//class	attribute	is	the	second	attribute		
24. 													
25. 																//predict	&	print		
26. 																for(int	i=0;	i<data.numInstances();i++){		
27. 																				double	value=cls.classifyInstance(data.instance(i));		
28. 																				String	prediction=data.classAttribute().value((int)value);		
29. 																				System.out.println("Prediction	for	instance:	"+i+"	is:	"+prediction);		
30. 																}		
31. 																	
32. 												}	catch	(Exception	e)	{		
33. 																//	TODO	Auto-generated	catch	block		
34. 																e.printStackTrace();		
35. 												}		
36. 								}	catch	(Exception	e)	{		
37. 												//	TODO	Auto-generated	catch	block		
38. 												e.printStackTrace();		
39. 								}		
40. 				}		
41. 					
42. }

